
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tags20

International Journal of Agricultural Sustainability

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tags20

Changing agricultural stubble burning practices
in the Indo-Gangetic plains: is the Happy Seeder a
profitable alternative?

Alwin Keil , P. P. Krishnapriya , Archisman Mitra , Mangi L. Jat , Harminder S.
Sidhu , Vijesh V. Krishna & Priya Shyamsundar

To cite this article: Alwin Keil , P. P. Krishnapriya , Archisman Mitra , Mangi L. Jat , Harminder
S. Sidhu , Vijesh V. Krishna & Priya Shyamsundar (2020): Changing agricultural stubble burning
practices in the Indo-Gangetic plains: is the Happy Seeder a profitable alternative?, International
Journal of Agricultural Sustainability, DOI: 10.1080/14735903.2020.1834277

To link to this article:  https://doi.org/10.1080/14735903.2020.1834277

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 28 Oct 2020.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tags20
https://www.tandfonline.com/loi/tags20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14735903.2020.1834277
https://doi.org/10.1080/14735903.2020.1834277
https://www.tandfonline.com/action/authorSubmission?journalCode=tags20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tags20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/14735903.2020.1834277
https://www.tandfonline.com/doi/mlt/10.1080/14735903.2020.1834277
http://crossmark.crossref.org/dialog/?doi=10.1080/14735903.2020.1834277&domain=pdf&date_stamp=2020-10-28
http://crossmark.crossref.org/dialog/?doi=10.1080/14735903.2020.1834277&domain=pdf&date_stamp=2020-10-28


Changing agricultural stubble burning practices in the Indo-Gangetic
plains: is the Happy Seeder a profitable alternative?

Alwin Keil a, P. P. Krishnapriyab, Archisman Mitrac, Mangi L. Jata, Harminder S. Sidhud,
Vijesh V. Krishnae and Priya Shyamsundarf

aInternational Maize and Wheat Improvement Center (CIMMYT), National Agricultural Science Centre (NASC) Complex, DPS
Marg, New Delhi, India; bSanford School of Public Policy, Duke University, Durham, NC, USA; cInternational Water Management
Institute (IWMI), National Agricultural Science Centre (NASC) Complex, DPS Marg, New Delhi, India; dBorlaug Institute of South
Asia (BISA), National Agricultural Science Centre (NASC) Complex, DPS Marg, New Delhi, India; eInternational Maize and Wheat
Improvement Center (CIMMYT), Carretera Mexico-Veracruz, El Batán, Mexico; fThe Nature Conservancy (TNC), Arlington, VA,
USA

ABSTRACT

Every year after the rice harvest, some 2.5 million farmers in northwest India burn the
remaining stubble to prepare their fields for the subsequent wheat crop. Crop residue
burning causes massive air pollution affecting millions of people across the Indo-
Gangetic Plains. We examine different tillage practices to provide urgently needed
empirical evidence on how profitable it is for farmers to adopt no-burn
technologies, especially the ‘Happy Seeder’ (HS) which is capable of sowing wheat
directly into large amounts of crop residue. Apart from analysing the cost of rice
residue management and wheat sowing under conventional-tillage and zero-
tillage, we identify factors influencing the adoption of the HS and quantify its
impact on wheat yields and –production costs. While we do not find any evidence
of a yield penalty, our analysis reveals significant savings in wheat production
costs, amounting to 136 USD ha–1. In addition, our analysis shows that the HS
saves water and facilitates timely wheat sowing. We conclude that the private
benefits of HS use combined with its societal benefits of reducing air pollution and
enhancing agricultural sustainability justify particular policy support for its large-
scale diffusion, to be supplemented by a stricter enforcement of the ban on
residue burning.
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1. Introduction

In the prevailing rice-wheat cropping system in north-

western India, a large share of the 2.5 million farmers

burn an estimated 23 million metric tons of rice

stubble in October and November to prepare their

fields for the subsequent wheat crop (NAAS, 2017).

Alongside significant loss of soil fertility due to

residue burning (Prasad et al., 1999), the resulting air

pollution impacts not only the farmers and their

families, but the seasonal meteorological conditions

facilitate smoke toblanket awide area affectingmillions

of lives in cities and villages downwind (Mishra &

Shibata, 2012; Vijayakumar et al., 2016). In 2016, pol-

lution resulted in the closure of all schools in Delhi

(Safi, 2016) and all manner of transport slowed down,

with associated economic losses. Of particular impor-

tance are health related costs, since air pollution is the

second leading contributor to the burden of disease

in India (Dandona et al., 2017). Studies indicated that

the decrease in air quality due to rice stubble burning

has a significant adverse effect on human pulmonary

functions (Agarwal et al., 2012; Awasthi et al., 2010).

Every year, about 66,000 deaths attributable to particu-

late matter with an aerodynamic diameter of less than
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2.5 micrometers (PM2.5) are associated with agricultural

burning (HEI, 2018).

Agricultural fires are on the increase in India

because of changes in mechanized harvesting, crop-

ping patterns and water stress (Liu et al., 2019).

While recent interest has focused on the impacts on

air pollution (Liu et al., 2019; Cusworth et al., 2018),

evidence also points to their contribution to short-

lived climate pollutants, such as methane and black

carbon, across central and southern India (Sarkar

et al., 2018). The reduction of short-lived climate pol-

lutants, the second largest contributor to climate

change (Bond et al., 2013), offer an opportunity to

mitigate climate change over a shorter time period.

The Indo-Gangetic plains, covering some 10.5

million hectares, represent India’s bread basket

(NAAS, 2017). The green revolution, with its new

seed technologies and mechanized farming practices,

transformed agriculture in India, making it more food

secure. The thriving north-western state of Punjab, for

instance, covers less than two percent of the country’s

land area, but grows nearly one-third of India’s rice

and wheat (Mann, 2017). Recent years, however,

have seen a decline in agricultural productivity, at

least partly because of changes in climate and water

(Kumar et al., 2015). One of the consequences of

these changes is a shift in the cropping calendar to

match the arrival of monsoonal rains, leaving

farmers with a short window of 10–15 days to move

from harvesting rice to sowing wheat. Since the phys-

ical removal of residues within a short period is not

economically viable (Ahmed et al., 2015), most

farmers clear their lands by burning their rice stubble.

The central and state governments in north-

western India, as well as universities and think-tanks,

have put forth several strategies to curtail agricultural

fires. Solutions to reduce burning include conserva-

tion tillage technologies such as the ‘Happy Seeder’

(HS), a tractor-mounted machine that mulches rice

residues and sows wheat in one single operation

(NAAS, 2017; Sidhu et al., 2015); subsidies for agricul-

tural no-burn technologies, currently in place through

a new national budget allocation (MoA, 2018); various

state directives and fines that penalize farmers for

burning (Bhuvaaneshwari et al., 2019); actions by

extension agencies to communicate and demonstrate

alternate options to farmers (Gupta, 2019); and straw

removal for use as inputs in power generation (Watts,

2018). Arguably, these efforts are bearing fruit with

some decline in fires in 2018 as compared to preced-

ing years (Singh, 2018).

Given the large number of affected farmers, an

agriculture-based solution appears to be the most

viable for reducing fires at scale in the short run.

Most farmers in north-western India currently practice

a form of conventional tillage that makes it con-

venient for them to burn their rice stubble.

However, there is a steady increase in alternate no-

till solutions that also offer long-term co-benefits in

terms of soil health (Bhan & Behera, 2014; Schmidt

et al., 2018; Sidhu et al., 2015). Based on a descriptive

comparison of ten different rice residue management

and wheat sowing methods with respect to farmer

net profits, Shyamsundar et al. (2019) provide recent

evidence that the use of the Happy Seeder, in particu-

lar, constitutes a practice that avoids stubble burning

and increases farmer profits. However, the meta-

analysis character of the study did not allow for the

construction of statistical confidence intervals

around net profits, nor did it correct for potential

selection bias between farmers applying conventional

versus no-till farming practices. With respect to asses-

sing profitability it has to be recognized that individ-

ual ownership is not a promising scaling pathway

for a highly specialized machine, such as the HS.

Rather, most farmers access the HS via custom-

hiring services offered by other farmers or specialized

service providers.

To help policy makers and development prac-

titioners make informed decisions in addressing the

pressing issue of residue burning, the current paper

seeks to reduce remaining uncertainties around the

viability of no-burn technologies by undertaking a

more in-depth and methodologically rigorous analysis

of farmer technology choices. Its objectives are to: (1)

assess farmers’ awareness and perceptions of the HS;

(2) analyse conventional-tillage (CT) and zero-tillage

(ZT) wheat production regimes in terms of yields,

input levels, and implications for rice residue burning

practices; under ZT, we differentiate between the use

of the simple ZT drill and the use of the Happy

Seeder; (3) quantify cost- and time implications of the

three considered technologies with respect to rice

residue management and wheat sowing; (4) identify

determinants of HS adoption, accounting for potential

non-exposure bias; and (5) quantify potential yield and

cost impacts of using the HS as compared to CT using

an econometrically rigorous approach.

The paper is organized as follows: Section 2 pro-

vides a brief description of the HS technology;

Section 3 describes the research area, data collected,

and sampling procedure employed; Section 4.1 lays
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out the econometric approach followed to address

objectives (4) and (5), while Section 4.2 describes

the model specification in more detail; Section 5 pre-

sents the results of the descriptive and econometric

analyses, which are discussed in Section 6; Section 7

concludes and derives recommendations for policy

and development programming.

2. Background on zero-tillage and the
Happy Seeder

CT practices in wheat typically involve multiple passes

of the tractor to accomplish plowing, harrowing,

planking and seeding operations (Erenstein & Laxmi,

2008). In contrast, ZT uses a zero-till drill to sow

wheat directly into unplowed fields with a single

pass. The typical ZT drill opens 6–13 narrow slits

using inverted-T openers to place both seed and fer-

tilizers at a depth of 7.5–10 cm (Mehla et al., 2000).

ZT for wheat seeding has been tested extensively

and found effective in terms of economics and time-

liness of wheat sowing in comparison with CT in the

rice-wheat system (Aryal et al., 2016; Erenstein &

Laxmi, 2008; Jat et al., 2020; Keil et al., 2017; Krishna

& Veettil, 2014). However, significant advances in

mechanized (combine) harvesting of rice over the

years has resulted in large amounts of loose residues

in the field. These conditions create problems for

direct drilling of wheat seed into combine-harvested

rice fields using the normal ZT seed drill due to: (1)

straw accumulation in the furrow openers; (2) poor

traction of the seed metering drive wheel due to the

presence of loose straw; and (3) the need for frequent

lifting of the implement under heavy residue con-

ditions, resulting in uneven seed depth and poor

crop establishment (Sidhu et al., 2015). An improved

substitute drill is the Happy Seeder, a specialized

no-till seeder, which has been developed, validated

and refined by agricultural researchers over the last

15 years (Sidhu et al., 2015).

The Happy Seeder is a tractor mounted implement

that combines a ZT seeder with a straw management

unit. The latter comprises of serrated rotating flails

attached to a roller that shreds and clean the residues

in front of the tyne openers and then deposits the

residue around the seeded row as mulch. This is

done in one simple operation of direct-drilling in the

presence of standing as well as loose surface residues.

The residue left on the surface as mulch helps reduce

evaporation losses, suppresses weed growth, buffers

soil moisture and temperature, and facilitates a

more efficient uptake of water and nutrients by

plant roots (Sidhu et al., 2015; Singh et al., 2015).

The use of the HS also reduces labour requirements

for crop establishment by as much as 80%, irrigation

needs by 20–25%, and herbicide use by as much as

50% (Saunders et al., 2012). It further reduces fuel

use and improves productivity, particularly under cli-

matic stress conditions (Aryal et al., 2016; Saunders

et al., 2012; Sidhu et al., 2015). The HS works best in

combination with a simple straw spreading mechan-

ism, called the ‘Super Straw Management System’

(Super SMS) that can be attached to the combine har-

vester, which enables uniform spreading residue

across the harvesting width. The development of

the Super SMS enhances the efficiency of the HS

and improves crop establishment and yields (Lohan

et al., 2018; NAAS, 2017). Approximately 11,000 HS

are already in use in north-west India, of which over

80% operate in Punjab (personal communication

with machine manufacturers). Eighteen manufac-

turers currently produce the HS.

3. Research area, sampling procedure, and
data collection

To understand farmer decisions related to the use of

different no-burn technologies we undertook a

survey in four districts in India’s north-western state

of Punjab. Out of a gross cropped area of 7.79 million

ha in Punjab, some 2.92 million ha (38%) are used to

cultivate paddy (DoA, 2015). Farmers mainly grow

two categories of rice – coarse (non-basmati) and

basmati rice, with coarse rice more likely to be

combine-harvested (Gupta, 2012), leaving large

amounts of straw on the field. Thus, the area under

basmati rice subtracted from the area under paddy

cultivation can be used as a proxy for the area

prone to residue burning (Lohan et al., 2018).

To select our survey districts, we first identified

those districts which had more than 70% of net

sown area under coarse (non-basmati) rice varieties

during the kharif season (July to October) of 2017.

Based on the burned area reported by recent

studies, these districts were further classified into

‘high residue burning’ and ‘low residue burning’: for

each district, an index was created by dividing the

area under crop residue burning by the total area

under coarse grain paddy. Depending on whether

the index was below or above the median value we

classified the district as low or high burning. The

area under coarse rice was computed using data
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from APEDA basmati survey report (APEDA, 2017). The

area under residue burning was taken from Kaur and

Rani (2016). Then, two districts were purposively

chosen in each category such that they were geo-

graphically located close to each other: Ludhiana

and Sangrur districts in the high residue burning

group, and Patiala and Fatehgarh Sahib in the low

residue burning category; all four districts are

located in the South-East Region of the state. We

chose neighbouring districts in order to minimize vari-

ation in agro-climatic factors across the chosen dis-

tricts. While, in the kharif season, at least 80% of the

paddy land is used to grow coarse rice varieties in

each of the four districts, wheat is the dominant

crop in the rabi season (November–April). Other

major crops are maize, sugarcane, vegetables,

pulses, mustard, and cotton (DoA, 2019).

For selecting study villages, we first identified all

villages where at least one person had purchased a

HS. To compile a complete list, we combined infor-

mation from leading HS manufacturers on the

machines sold in our target districts, lists of farmers

who received HS services from Primary Agriculture

Cooperative Societies (PACS),1 and lists of subsidy

recipients for HS purchases provided by the State

Department of Agriculture. From the final list, 16 vil-

lages were then randomly selected in each survey dis-

trict using a probability proportionate to village size

approach. Since zero-tillage wheat is not very

common in the area, as a first stage of data collection

a census survey was administered in the 64 (16 × 4)

selected villages to stratify the sample by wheat

establishment method, differentiating between CT,

ZT drill and HS. Based on the data in the census

survey, 13 villages were selected from each district,

excluding villages that had no HS users. Farm house-

holds in the selected 52 (13 × 4) villages were stra-

tified into CT, ZT drill and HS users based on data

from the census survey.

To identify farm households for the sample survey,

due to their relative scarcity, all no-till households

were included in the sample. Out of the stratum of

CT users, village-wise random samples were drawn

using the following selection rule: if the number of

no-till households was less than 15, the number of

randomly selected CT households equalled 15 minus

the number of no-till households; in cases where the

number of no-till households was 15 or more, the

number of selected tillage-households was approxi-

mately 25% of the number of no-till households in

that village. This approach led to a total sample size

of 1021 farm households, encompassing 561 CT

users, 226 ZT drill users, and 234 HS users in 52 vil-

lages. Some households used more than one wheat

establishment method; anyone who used the HS

(apart from CT and/or ZT drill) was considered a HS

user, and anyone using a ZT drill (apart from CT)

was considered a ZT drill user.

The data collected encompassed information on

general household characteristics, asset endowment

and farming practices, and included particularly

detailed questions on rice residue management and

wheat sowing. Furthermore, survey respondents

were asked to provide basic information on three

farmers with whom they interacted most frequently

about agricultural issues in order to be able to

capture potential individual social network effects

on HS adoption. All data were collected from house-

hold heads by a team of professional enumerators

through structured interviews using CAPI software.

4. Methodological approach

4.1. Model estimation strategy

4.1.1. Accounting for non-exposure to the HS

technology

In instances where a technology is relatively new to an

area, as is the case with the HS in the research area, a

model that identifies adoption determinants needs to

account for potentially lacking awareness of the tech-

nology among farmers in order to avoid estimates to

be affected by non-exposure bias. The bias results

from the fact that farmers who are not aware of a

new technology have no chance to adopt it, although

they may have adopted if they had known about it

(Diagne & Demont, 2007). Non-exposure bias can

arise due to (1) farmers differing in their ambitions

to search for information about new technologies

and their ability and willingness to process such infor-

mation; and (2) farmers differing in their access to

information about new technologies; in particular,

so-called ‘progressive’ farmers and communities may

be targeted by agricultural development projects or

have a higher level of connectivity to state extension

or private sector input suppliers (Diagne & Demont,

2007). Based on the approach of van de Ven and

van Praag (1981) and building on Keil et al. (2017),

we apply a two-stage estimation framework using a

probit model with sample selection to correct for

potential non-exposure bias. The first-stage probit

model identifies determinants of ‘knowledge
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exposure’ (Kabunga et al., 2012); in the second stage,

a probit model identifies determinants of technology

adoption among the aware sub-sample. Since the

sample selection process is non-random, non-

exposure bias needs to be controlled for. This is

achieved by estimating a ‘heckprobit’ model which

includes the Inverse Mills Ratio (IMR) in the second-

stage probit model, analogous to the method pro-

posed by Heckman (1979) for the case of a second-

stage regression with a continuous dependent

variable.

4.1.2. Accounting for social network effects in

the adoption process

Since the seminal review by Feder et al. (1985) on the

adoption of agricultural innovations, which focused

on individual-specific farm and farmer characteristics

as potential adoption determinants, the role of

social learning has been increasingly accounted for

in later studies (Feder & Savastano, 2006; Foster &

Rosenzweig, 1995; Granovetter, 2005). As pointed

out by Manski (2000), farmers may not only be

influenced by the adoption behaviour of their individ-

ual social networks (endogenous network effect), but

also by their network members’ socio-economic

characteristics (exogenous network effect). Drawing

on the work of Matuschke and Qaim (2009), we

account for endogenous and exogenous individual

network effects as in the following equation:

yi = bXi + dyn(i) + 1Xn(i) + ui (1)

where yi = 1 if the household used the HS for wheat

sowing in the rabi season 2017/18, and yi = 0 if con-

ventional tillage was used. As emphasized by Feder

et al. (1985), a binary (yes/no) measure of technology

adoption has severe shortcomings if there is great

variation in the adoption intensity in terms of share

of land allocated to the innovation. However, in our

case we find that, once the decision is made to use

the HS, the practice is used on the entire wheat area

by 89% of adopters, justifying the use of a binary

dependent variable. Further, Xi is a vector of exogen-

ous regressors, yn(i) denotes the adoption behaviour

of household i’s individual social network, and Xn(i) is

a vector of exogenous network member character-

istics; b, d, and 1 are (vectors of) parameters to be

estimated, and ui is a random error term. However,

adopting the approach of Keil et al. (2017), we

extend the methodology of Matuschke and Qaim

(2009) by accounting for potential non-exposure

bias as elaborated above. Hence, we estimate the

model:

yi = ḃẊ i + bll̇i + u1i (2)

where Ẋ i encompasses all regressors included in

Equation (1) and l̇i is the IMR derived from an

exposure equation of the form

ai = ġŻi + u2i (3)

where Żi in addition to other regressors, contains

endogenous and exogenous individual social

network characteristics as specified in Equation (1).

We use the Stata 15 software package (www.stata.

com) to estimate the ‘heckprobit’ model, specifying

heteroskedasticity-consistent standard errors that

account for clustering of the sample at the village

level. The model produces a Wald test on the null

hypothesis that the correlation between error terms

u1i and u2i r = 0, in which case non-exposure

bias does not exist, and Equation (2) simplifies to

Equation (1).

4.1.3. Estimating the on farm impacts of Happy

Seeder adoption

Unless the technology dissemination takes place in a

randomized experiment setup, farmers decide them-

selves whether to adopt or not, making adoption a

non-random process. Direct comparison of outcomes

between adopting and non-adopting households can

be misleading as these groups may differ systemati-

cally, both with respect to observed and unobserved

attributes. The measure of association between treat-

ment (in our case, Happy Seeder adoption) and

outcome (here, yield or PUC of wheat production)

could be distorted due to a sample selection that

does not accurately reflect the target population.

The conventional statistical procedure to address

this bias is the use of instrumental variable regression

which allows to quantify the impact of technology

adoption on outcome variables of interest, whilst

eliminating the effect of reverse causation or simulta-

neity (Angrist & Pischke, 2008). However, when the

technology impact is not homogeneous across

sample households, interaction terms between the

endogenous adoption variable and other covariates

(e.g. education) need to be included in the model.

The number of instrumental variables required to

just identify the model increases with the number of

interaction terms. In general, it is difficult to even

find a single suitable instrumental variable for model

identification, and many a time the choice of the
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instruments is debatable for not meeting the exclu-

sion restriction. The magnitude of this challenge

increases when one attempts to estimate the hetero-

genous impacts of an endogenous variable.

A more elegant and convenient way to address

self-selection bias is to employ an endogenous treat-

ment effects (ETE) approach, where adoption is

treated as a regime shifter, and a single instrumental

variable (selection instrument) suffices to capture

the heterogenous effects of the technology. The

inherent assumption of the ETE framework is that

the error terms are independent and identically dis-

tributed, meaning that the outcome and treatment

status of each respondent are unrelated to the

outcome and treatment status of all the other individ-

uals in the population. Thus, although these models

are less suitable for modelling correlated data

arising from hierarchical or longitudinal study

designs, they are ideal for estimating impacts from

cross-sectional datasets, as in our study. The main

advantages of an endogenous switching model are

that they allow to model both the allocation of house-

holds to various treatments and the effects of treat-

ment on other outcomes, while estimating the

degree to which common, unmeasured variables

affect both the outcome and the explanatory vari-

ables. This approach considers the potential selection

bias and simulates how non-adopters would fare had

they entered the adopter group (Winship & Mare,

1992).

Estimation of the ETE model involves two stages.

The first stage is a selection equation, based on a

binary choice function, where technology adoption

(Ai) by household i is hypothesized to be determined

by a number of farm-household attributes.

A∗
i = zia+ hi where Ai =

1 if A∗
i . 0

0 otherwise

{

(4)

The observed realization Ai of the dichotomous

latent variable A∗
i captures the expected benefits

from technology adoption; zi are the observed farm-

household characteristics affecting the adoption vari-

able, a is the parameter vector to be estimated, and hi

is the unobserved heterogeneity. In the second stage

of the ETE estimation, the outcome of interest is mod-

elled based on the observed adoption realization Ai.

The details of the ETE estimation are provided by

(Greene, 2008). Two regime equations are specified

explaining the outcome of interest, based on the

selection function:

Regime 1: Y1i = x1ic1 + 11i if Ai = 1 (5a)

Regime 2: Y2i = x2ic2 + 12i if Ai = 0 (5b)

where xi are farm-household characteristics affecting

the outcome variable (Yi), c1 and c2 are parameter

vectors to be estimated, and 11 and 12 are the error

terms for regimes 1 and 2, respectively. For a robust

identification of the model the selection equation

should contain at least one variable (i.e. selection

instrument) that is correlated with adoption but

uncorrelated directly with the outcome (exclusion

restrictions; Deb & Trivedi, 2006). We use variables

related to social network characteristics (NM HS use

and NM age) as the selection instruments. Similar to

the two-stage least squares or control function

approach, selection instruments are required in the

ETE framework for the model to be identified. Di

Falco et al. (2011) suggested a simple falsification

test to examine admissibility of these instruments. A

valid selection instrument will affect adoption, but

not the outcome among non-adopters.

Several studies have modelled the heterogeneous

impacts of interventions in agriculture employing the

ETE framework (e.g. Krishna et al., 2019; Manda et al.,

2016; Yahaya et al., 2018). Here, we use the ETE model

to compare the expected outcomes in terms of yield

and PUC of Happy Seeder adopters and non-adopters,

and to investigate the expected outcomes in the

counterfactual hypothetical cases that adopter

households had not adopted the technology. We

can estimate the average effect of adoption on a

population of farm households as

E(Y1|Ai = 1− Y2|Ai = 0), where E is the mathematical

expectation operator. This is denoted the average

treatment effects (ATE) parameter, which in the

impact evaluation literature is equivalent to the

‘intention-to-treat’ effect or the ‘supply-of-the-tech-

nology’ effect (Nguezet et al., 2011), in our case the

impact of supplying the Happy Seeder technology

to farmers. The impact parameter that identifies the

causal effect of adoption in the presence of non-com-

pliance is the average treatment effect on the treated

(ATT), which restricts the computation of the average

treatment effect to the subpopulation of adopters,

that is E(Y1 − Y2)|Ai = 1.
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4.2. Model specification

4.2.1. Determinants of Happy Seeder adoption

The dataset used to identify HS adoption determi-

nants comprises 234 HS users and 561 users of con-

ventional tillage (CT) in wheat. 49 CT users (8.7%)

had never heard about the HS technology at the

time of the survey. Hence, we account for potential

non-exposure bias in our analysis, as elaborated

above.

Based on the review of technology adoption deter-

minants by Feder et al. (1985) and drawing on the

concept of livelihood resources as depicted in the sus-

tainable livelihoods framework (Chambers & Conway,

1992; Scoones, 1998), we hypothesize the households’

asset base and risk preferences to influence the

decision to adopt the HS. The asset base includes (1)

natural capital, (2) human capital, (3) financial

capital, and (4) social capital and information access.

Variables measuring access to input and output

markets were tested and found to not influence HS

adoption; for reasons of statistical efficiency they

were omitted from the final models. Definitions and

summary statistics of the dependent and explanatory

variables used are presented in Table 1. The table

further shows that the first-stage equation contains

two dummy explanatory variables, TV and internet

use to access agricultural information, which are

omitted from the second-stage; as pointed out by

Rogers (2003), mass media are of particular impor-

tance for raising awareness, while interpersonal com-

munication channels have greater relevance

regarding the adoption decision. Including at least

one variable in the vector of selection equation

regressors (Zi) which is not contained in the regressors

of the second stage (Xi) is not only conceptually con-

sistent, but also highly desirable for econometric

reasons. If Zi and Xi are identical, the IMR can be

highly correlated with the elements of Xi, resulting

in inflated standard errors (Wooldridge, 2006, p. 620).

To adequately reflect the concept of information

access, the variable Extension access indicates the

extent to which information from the extension

service was generally available, assessed on a Likert

scale; frequently used alternative specifications, such

as extension visits received or field days attended,

constitute combined measures of extension access

and the farmer’s decision whether or not to make

use of it (Doss, 2006). For similar reasons, we chose

to measure Credit access in terms of potential credit

availability on a Likert scale, rather than eliciting the

amount actually borrowed, which potentially con-

founds access to credit with demand for credit.

While most models of technology adoption treat risk

preferences as an unobservable factor, we include a

proxy of the household head’s risk preferences as an

explanatory variable, which is based on a self-assess-

ment question and has been previously applied by

Gloede et al. (2011).

As elaborated above, a salient feature of our model

is the inclusion of the respondents’ individual agricul-

tural information network characteristics as explana-

tory variables. These variables are based on

information provided by the survey respondents

regarding those three farmers with whom they inter-

acted most frequently about agricultural issues,

referred to as network members (NMs) in the follow-

ing. To capture endogenous network effects, we col-

lected data on the NMs’ HS adoption status,

including information on the timing of adoption.

The latter is crucial to address the so-called reflection

problem (Manski, 1993): while the behaviour of NMs

potentially influences the survey respondent, the

reverse is also the case. As suggested by Manski

(2000), we therefore assume that the respondent’s

adoption decision is influenced by the level of

success that his NMs had with the technology,

which is consistent with empirical findings (e.g.

Foster & Rosenzweig, 1995). Therefore, only those

NMs who used the HS earlier than the respondent

enter our model as HS-adopting NMs. To capture

potential exogenous network effects, i.e. those

attributable to who the NMs are, rather than how

they behave, we elicited information about their

age, education, and caste (not all of which are

included in the final model). Individual social net-

works tend to be characterized by a high degree of

homophily, i.e. they are usually formed among

farmers of a similar social status (Keil et al., 2017;

Rogers, 2003). Econometrically speaking this means

that peer group membership itself is likely to be

endogenous (Matuschke & Qaim, 2009; Songsermsa-

was et al., 2016), which the inclusion of NM character-

istics as control variables may mitigate to some

extent. Potential endogeneity could be better con-

trolled by using instrumental variables: Songsermsa-

was et al. (2016) used the characteristics of friends

of the respondents’ NMs (who were unknown to the

respondents themselves) as instruments for the

NMs’ characteristics, but such costly-to-collect infor-

mation was not available in our case. Table 1 lists

the definitions and summary statistics of the
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dependent and explanatory variables used in the

awareness and adoption stages of the ‘heckprobit’

model. The same variables are used in the selection

equation of the ETE model.

4.2.2. Impact of the Happy Seeder on wheat

yields and production costs

We estimate separate models for two outcome vari-

ables of interest: Model 1 explores the impact of HS

relative to CT wheat on land productivity, i.e. grain

yield measured in kg ha−1; Model 2 assesses the

impact on the profitability of wheat production,

measured as per-unit production cost (PUC). More

specifically, PUC measures the variable cost per

quintal (=100 kg) of wheat grain produced. We do

not account for fixed costs in our analysis as these

are highly idiosyncratic and largely independent of

the two technologies under consideration. Land

resources can be owned and/or rented in, as is the

case with agricultural machinery. Furthermore,

machine depreciation depends on use intensity,

which in turn depends on the landholding size and

Table 1. Definitions and summary statistics of dependent and explanatory variables in regression models explaining awareness and adoption
of the Happy Seeder (HS) for wheat sowing in Punjab, India.

Variable description

Awareness stage
(N = 795)

Adoption
conditional on
awareness
(N = 746)

Mean
Std.
Dev. Mean

Std.
Dev.

Dependent variables
HS awareness = Dummy, =1 if HHa head has at least heard about HS, 0 otherwise 0.938 0.241 – –

HS adoption = Dummy, =1 if HH used HS in wheat in the 2017/18 rabi season, 0
otherwise

– – 0.314 0.464

Natural capital
Cultivable area = Total area available for cultivation (ha) 5.241 4.421 5.323 4.480
Human capital
Dependency ratio = Dependency ratio (no. HH members aged <14 and >65 / all HH

members)
0.189 0.172 0.190 0.172

Age = Age of HH head (years) 51.016 10.923 51.090 11.024
High education = Dummy, =1 if educational achievement of HH head is > 12th

grade, 0 otherwise
0.196 0.397 0.202 0.402

General caste = Dummy, =1 if HH belongs to one of the ‘general’ (non-
marginalized) castes, 0 otherwise

0.936 0.245 0.936 0.246

Risk preference = HH head’s general risk preference, self-assessed on a scale from
0 (= fully avoiding risk) to 10 (= fully prepared to take risk)

6.031 1.301 6.044 1.297

Financial capital
Credit access = Perceived credit access on a scale from 0 (= no access) to

5 (= very good access)
3.246 0.752 3.266 0.746

Non-farm share = Share of non-farm income in total HH income in 2017 (%) 4.110 12.447 3.746 11.532
Information access
Farmer association = Dummy, =1 if HH head is member of the local farmer

association, 0 otherwise
0.316 0.465 0.322 0.467

Extension access = Perceived access to agricultural extension on a scale from 0 (=
no access) to 5 (= very good access)

3.181 0.790 3.186 0.800

TV use = =Dummy, =1 if TV is used as source of agricultural information,
0 otherwise

0.160 0.367 –

Internet use = =Dummy, =1 if the internet is used as source of agricultural
information, 0 otherwise

0.006 0.079 –

Social network characteristics
NM HS usea = No. network members (NMs) of the respondent who used HS

before him/her
0.570 0.994 0.601 1.016

NM age = Average age of NMs (years) 45.404 6.991 45.483 6.957
District dummies (Ludhiana is
base district)

Fatehgarh = Dummy, =1 if HH is located in Fatehgarh Sahib district, 0
otherwise

0.218 0.413 0.218 0.414

Ludhiana = Dummy, =1 if HH is located in Ludhiana district, 0 otherwise 0.216 0.412 0.190 0.393
Patiala = Dummy, =1 if HH is located in Patiala district, 0 otherwise 0.191 0.393 0.197 0.398
Sangrur = Dummy, =1 if HH is located in Sangrur district, 0 otherwise 0.375 0.484 0.394 0.489

Notes: HH = Household; HS = Happy Seeder; NM = Network member.
aOut of three primary agricultural network members.
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the cropping system practiced. Moreover, the multi-

tude of implements used vary widely in their respect-

ive investment cost and useful life, compromising any

attempt to capture the associated fixed costs in a

meaningful way. Most importantly, as indicated in

the introduction, most farmers access specialized

machinery, such as the HS, via custom-hiring services

offered by other farmers or specialized service provi-

ders, so that only variable costs are incurred. PUC

does include the imputed cost of family labour

input, valued at the median wage rate paid to hired

labour in the research area, which amounted to 39

Indian Rupees (INR) per hour (1 USD = 64.8 INR as of

Nov 01, 2017).

Both models use the same set of explanatory vari-

ables, encompassing agricultural input variables,

agronomic control variables, and management

related control variables (Table 2). Same as yield, agri-

cultural inputs are measured on a per-hectare basis,

which is why land is omitted as an input factor. The

variable Capital input encompasses all non-labour

related variable costs; the cost of hired labour is cap-

tured by Labour expenses, and total labour input (both

family and hired labour) is measured by Labour hours.

The dependent variables and agricultural input

factors enter the model in their logged form as this

achieves more compact distributions and a superior

fit compared to the unlogged specification. Agro-

nomic control variables are related to the sowing

time (which can have important yield implications in

the research area, as elaborated in Section 2), wheat

varieties used, and soil characteristics. Management

related control variables encompass the same set of

variables as in the first stage (selection equation) of

the ETE model, apart from the following exceptions:

Credit access is omitted since capital input is directly

accounted for. The variables related to social

network characteristics, NM HS use and NM age, are

used as selection instruments (see Section 4.1.3) and

are therefore omitted from the outcome equations.

Variables measuring farmer-to-farmer extension

have been used as selection instruments in other

studies (Ayuya et al., 2015; Di Falco et al., 2011). As

suggested by Di Falco et al. (2011), we perform a

simple test to verify the validity of these instruments:

while both variables affect the decision to adopt the

HS (see Table 8), they should not affect wheat yields

and PUC among the non-adopting households. In

the case of PUC, both variables are jointly insignificant

(F-stat. = 0.48, P = 0.62), hence clearly passing the vali-

dation test. In the yield model, NM age is insignificant

(P = 0.42), but NM HS use is significant at the 5% level.

While this is a limitation of Model 1, we argue that the

inclusion of at least one valid instrument in the selec-

tion equation does ensure the identification of the

model. Two variables controlling for machine owner-

ship versus use of custom-hiring services, No.

implements owned and No. services hired, are included

in the outcome equations only. They are endogenous

to HS adoption since the technology reduces the

number of implements used for rice residue manage-

ment and wheat sowing to strictly one. Apart from

listing summary statistics, Table 2 indicates whether

the means of the explanatory variables differ signifi-

cantly between CT and HS wheat regimes.

5. Results

5.1. Awareness and farmer perceptions of the

Happy Seeder

Our measure of ‘awareness’ indicates whether or not

the respondent household head had at least heard

about ZT and the HS at the time of the survey. Table

3 shows that farmers’ awareness of ZT/HS was gener-

ally high (Column 4). It further compares awareness

and use of ZT and the HS across landholding terciles

(Columns 1–3), revealing some scale bias with

respect to the HS; i.e. the proportion of farmers in

the smallest tercile being aware of and using the HS

was lower than the respective shares in the largest

tercile, whereby the middle tercile took an intermedi-

ate position. The adoption rate of the HS is of particu-

lar interest, which amounted to 8% of the aware

farmers in the smallest tercile, 15% in the largest

tercile, and 12% overall. The percentages shown in

Table 3 are based on weighted observations to

correct for the over-sampling of ZT drill and HS

users in the sample (see Section 3) and can thus be

considered representative of the situation in villages

with at least some HS presence in the survey districts.

The table further illustrates that, on average, adopting

households applied ZT technologies to more than

90% of their total wheat area in the 2017/18 rabi

season, with use intensities being particularly high

among adopters in the smallest and middle landhold-

ing terciles.

Table 4 explores the perceptions that ‘aware’

farmers have about the HS. We presented a number

of statements to our survey respondents and elicited

their degree of agreement on an ordinal scale ranging

from ‘strongly disagree’ via ‘disagree’, ‘neutral’, ‘agree’
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Table 2. Definitions and summary statistics of dependent and explanatory variables in regression models explaining wheat yield and per-unit
production costs in conventional-tillage (CT) and Happy Seeder (HS) wheat growing regimes in Punjab, India.

Variable description

Conventional-tillage
wheat

(N = 561)

Zero-tillage wheat
using HS
(N = 234)

Mean Std. Dev. Mean Std. Dev.
Sig. of
diff.e

Dependent variablesa

Wheat yield = Logged wheat grain yield (kg ha−1) 5422.75 327.71 5492.03 268.42 ****
Per-unit cost = Logged total variable per-unit production cost

(INR MT−1)b
2120.94 2024.37 1469.62 1174.32 ****

Agricultural input
variablesa

Capital input = Logged total non-labour capital input (INR ha−1) 18,984.90 2254.26 17,741.97 1887.04 ****
Labour input = Logged hired and family labour input (person-

hours ha−1)
58.845 21.611 51.984 10.473 ****

Labour expenses = Logged expenses for hiring labour (INR ha−1)c 819.82 644.47 693.56 458.41 ***
Agronomic control
variables

Late sown = Dummy, =1 if wheat was sown later than Nov
13, 0 otherwise

0.045 0.207 0.004 0.065 ***

HD2967 = Dummy, =1 if HD2967 variety was used, 0
otherwise

0.549 0.498 0.615 0.488 *

HD3086 = Dummy, =1 if HD3086 variety was used, 0
otherwise

0.349 0.477 0.303 0.461 n.s.

PBW725 = Dummy, =1 if PBW725 variety was used, 0
otherwise

0.077 0.266 0.064 0.245 n.s.

Sandy soil = Dummy, =1 if soil is sandy, 0 otherwise 0.800 0.400 0.880 0.325 ***
Clay soil = Dummy, =1 if soil is clayey, 0 otherwise 0.012 0.111 0.013 0.113 n.s.
Management related
control variables

Dependency ratio = Dependency ratio (no. HH members aged <14
and >65 / all HH members)

0.185 0.168 0.200 0.179 n.s.

Age = Age of HH head (years) 51.504 10.709 49.846 11.356 **
High education = Dummy, =1 if educational achievement of HH

head is > 12th grade, 0 otherwise
0.189 0.392 0.214 0.411 n.s.

General caste = Dummy, =1 if HH belongs to one of the ‘general’
(non-marginalized) castes, 0 otherwise

0.920 0.272 0.974 0.158 ***

Risk preference = HH head’s general risk preference, self-assessed
on a scale from
0 (= fully avoiding risk) to 10 (= fully prepared
to take risk)

6.035 1.287 6.021 1.335 n.s.

Non-farm share = Share of non-farm income in total HH income in
2017 (%)

4.678 13.484 2.748 9.400 n.s.

Farmer association = Dummy, =1 if HH head is member of the local
farmer association, 0 otherwise

0.312 0.464 0.325 0.469 n.s.

Extension access = Perceived access to agricultural extension on a
scale from 0 (= no access) to 5 (= very good
access)

3.247 0.717 3.022 0.925 ***

TV use = =Dummy, =1 if TV is used as source of
agricultural information, 0 otherwise

0.171 0.377 0.132 0.340 n.s.

Internet use = =Dummy, =1 if the internet is used as source of
agricultural information, 0 otherwise

0.007 0.084 0.004 0.065 n.s.

No. implements owned = Number of implements owned which the farmer
uses for rice residue management and wheat
sowingd

2.160 1.453 0.265 0.442 ****

No. services hired = Number of custom-hiring services used for rice
residue management and wheat sowing

0.342 0.809 0.372 0.484 ****

District dummies
(Ludhiana is base
district)

Fatehgarh = Dummy, =1 if HH is located in Fatehgarh Sahib
district, 0 otherwise

0.253 0.435 0.132 0.340 ****

(Continued )
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to ‘strongly agree’. A ‘Don’t know’ category accommo-

dated cases where respondents were not able to

judge a particular statement. For greater clarity,

Table 4 aggregates the ‘strongly (dis)agree’ and ‘(dis)-

agree’ categories and omits the ‘neutral’ category. The

percentages shown are based on cases where farmers

were able to provide their judgement, i.e. cases of

‘Don’t know’ are excluded. To differentiate between

perceptions that are based on hear-say opposed to

those that are based on the respondents’ own

experience, the table compares the perceptions of

farmers using CT in wheat to those who practice ZT

using a simple ZT drill and those who are actually

using the HS.

The results illustrate that aware farmers have

mostly positive perceptions about the HS (Column

4), whereby the assessment by farmers who are cur-

rently using the technology (Column 3) is generally

more favourable than that of aware non-users

(Columns 1–2). Approximately two-thirds and half of

the aware farmers indicate a short-term and long-

term yield benefit from using the HS, respectively.

This is confirmed by similar shares of farmers disagree-

ing that the HS reduces yields in the short and long

run, respectively (Column 4). HS users have a more

positive perception about yield benefits than non-

users, with 91% perceiving a short-term and 69% a

long-term yield increase (Column 3). Three-quarters

Table 2. Continued.

Variable description

Conventional-tillage
wheat

(N = 561)

Zero-tillage wheat
using HS
(N = 234)

Mean Std. Dev. Mean Std. Dev.
Sig. of
diff.e

Ludhiana = Dummy, =1 if HH is located in Ludhiana district,
0 otherwise

0.283 0.451 0.056 0.230 ****

Patiala = Dummy, =1 if HH is located in Patiala district, 0
otherwise

0.248 0.432 0.056 0.230 ****

Sangrur = Dummy, =1 if HH is located in Sangrur district, 0
otherwise

0.216 0.412 0.756 0.430 ****

Notes: HH = Household; HS = Happy Seeder.
aFor ease of interpretation, summary statistics are provided for the unlogged variables.
bINR = Indian Rupees; 1 USD = 64.8 INR (Nov 01, 2017); MT = metric ton.
cFees paid for mechanization services encompassing a labour- and a machine rental component are included in Capital input.
dMaximum of 5 implements owned and 4 services hired in CT wheat. In HS wheat maximum is strictly 1 for both implements owned and
services hired; a value of 0 for both variables indicates that the machine was rented and farmer-operated.

e*(**)[***]{****} Means of CT and HS wheat regimes statistically significantly different at the 10%(5%)[1%]{0.1%} level of alpha error probability.
Comparisons based on Mann-Whitney tests in case of interval-scaled variables and chi-square tests in case of dummy variables.

Table 3. Awareness and use of the simple zero-tillage drill (‘ZT drill’) and the Happy Seeder (HS) in the 2017/18 rabi season in the survey
villages in Punjab, India, differentiated by landholding terciles.

(1)
Smallest
tercile

(N = 309)

(2)
Middle
tercile

(N = 361)

(3)
Largest
tercile

(N = 351)

(4)
All households
(N = 1021)

Sig. level of
difference

Aware of ZT (% yes) 94.1 95.4 96.9 95.4 n.s.1

Using ZT drill (% yes) 5.4 7.5 8.3 7.0 n.s.1

Using ZT drill (% yes among aware sub-
population)

5.7 7.8 8.5 7.4 n.s.1

Mean use intensity (% wheat area among ZT
users)

100.0a 95.4b 87.6c 93.4 *2

Aware of HS (% yes) 91.0 94.8 94.9 93.5 **1

Using HS (% yes) 7.3 12.5 14.1 11.3 ***1

Using HS (% yes among aware sub-population) 8.0 13.2 14.9 12.0 ***1

Mean use intensity (% wheat area among HS
users)

98.7a 93.5a 84.5b 90.9 *2

*(**)[***] Statistically significantly different at the 10%(5%)[1%] level of alpha error probability.
1Based on chi-square test, indicating whether distributions across terciles deviate from each other.
2Based on multiple Mann-Whitney tests accounting for family-wise error; diverging superscript letters indicate statistical significance at least at
the indicated level.
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Table 4. Perceptions about the Happy Seeder (HS) for wheat sowing among awarea farmers in the survey villages in Punjab, India, differentiating conventional-tillage (CT) users, simple zero-till (ZT)
drill users, and Happy Seeder (HS) users (values across ‘agree’and ‘disagree’ categories do not sum up to 100%; deviation commensurate to ‘neutral’ category; values >10% in bold).

(1)
CT users

(2)
Simple ZT drill users

(3)
HS users

(4)
Whole sample

Sig. level of
differencebStatement

(Strongly)
agree
(%)

(Strongly)
disagree
(%)

(Strongly)
agree
(%)

(Strongly)
disagree
(%)

(Strongly)
agree
(%)

(Strongly)
disagree
(%)

(Strongly)
agree
(%)

(Strongly)
disagree
(%)

HS increases yields in the
short run
(N = 461/216/234/911)

51.6 4.3 74.5 2.3 90.6 3.9 67.1 3.7 ****

HS increases yields in the long
run
(N = 451/216/232/899)

41.7 4.9 47.7 6.5 69.0 4.3 50.2 5.1 ****

HS reduces yields in the short
run
(N = 461/216/234/911)

3.5 52.3 1.9 75.0 2.6 91.9 2.9 67.8 ****

HS reduces yields in the long
run
(N = 451/216/232/899)

3.8 42.8 3.2 50.4 2.6 70.7 3.3 51.8 ****

HS leads to severe weed
problems
(N = 339/185/229/753)

4.7 66.7 1.6 82.2 3.9 83.0 3.7 75.4 ****

HS leads to severe rodent
problems
(N = 317/164/214/695)

7.6 63.4 8.5 67.1 15.0 68.7 10.1 65.9 ***

HS saves substantial amounts
of water
(N = 502/221/234/957)

91.0 4.4 97.3 1.4 91.5 2.1 92.6 3.1 **

HS saves substantial amounts
of labour
(N = 507/221/234/962)

96.3 2.4 97.7 0.9 99.6 0.0 97.4 1.5 *

HS saves substantial amounts
of fuel
(N = 506/221/234/961)

97.4 1.6 99.1 0.5 99.6 0.4 98.3 1.0 n.s.

HS helps to reduce air
pollution
(N = 495/220/233/948)

87.5 2.2 87.7 4.1 89.7 1.7 88.1 2.5 n.s.

aExcluding cases of ‘Don’t know’, leading to varying numbers of observations per statement, as indicated in brackets; values of N are for CT users/Simple ZT drill users/HS users/Whole sample,
respectively.

bBased on chi-square test; *(**)[***]{****} indicate that distributions across groups deviate from each other at 10%(5%)[1%]{0.1%} level of alpha error probability.
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of farmers disagree that the HS leads to severe weed

problems; the share of HS users disagreeing is signifi-

cantly higher (83%) than that of farmers who use con-

ventional tillage (67%), whereas the perception of

simple ZT drill users is in line with that of the HS

users. Around two-thirds of farmers in all three

groups disagree that the HS leads to severe problems

with rodents, but the share of farmers agreeing to this

statement is higher among HS users (15%) than

among non-users of the technology (around 8%). A

large majority of more than 90% of farmers in all

three groups agree that the HS saves fuel, labour

and water. Finally, close to 90% of farmers in all

three groups agree that the HS helps reduce air pol-

lution, highlighting the relevance of this issue to

farmers in the research area.

5.2. Comparative analysis of conventional-

tillage and zero-tillage wheat production

systems

In this section we first compare basic characteristics of

CT and ZT wheat production systems related to yield,

time of crop establishment, input use and gross

margins obtained (Table 5); ZT is again subdivided

into two crop establishment methods, applying

either the simple ZT drill or the HS. We then

compare the three wheat establishment methods

with respect to the management of the previous

(rice) crop’s residues, especially burning practices

(Table 6). Lastly, we focus on the field operations

carried out for (rice) residue management and

wheat sowing under the three production systems,

eliciting cost and time implications in more detail

(Table 7).

Table 5 shows that, on average, farmers achieved

very similar yields of around 5450 kg ha−1 using the

three wheat establishment methods (Column 1).

Nevertheless, the data indicate a slightly, but statisti-

cally significantly higher yield obtained in the two

ZT systems. Both ZT technologies save time, resulting

in earlier wheat establishment (by 2.7 days as com-

pared to CT wheat, Column 2) and a shorter turn-

around time between rice harvest and wheat

sowing (by approx. 4 days, Column 3). The use of ZT

also saves water by making pre-sowing irrigation dis-

pensable through better retention of soil moisture,

resulting in an average of 4.9 irrigations applied to

ZT wheat as compared to 5.7 irrigations in the CT

regime (Column 8). T
a
b
le
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Furthermore, the descriptive analysis indicates a

small but statistically significant reduction of herbi-

cide expenses in ZT wheat as compared to CT wheat

(Column 7). In the case of HS wheat, also the appli-

cation of urea was slightly reduced (Column 5); i.e.

compared to CT wheat, a (slightly) higher yield was

achieved with slightly lower urea input, reduced her-

bicide expenses and reduced irrigation. The gross

margins, i.e. returns to land, achieved with ZT wheat

exceed those of CT wheat by approximately

2600 INR ha−1, on average. There is no difference in

gross margins between HS and simple ZT drill tech-

nologies (Column 9). Under conditions of increasing

rural labour scarcity, as is the case in Punjab (Reddy

et al., 2014), returns to labour are of particular rel-

evance. As Column 10 shows, returns to labour

differ significantly across all three wheat establish-

ment methods, with returns under the HS exceeding

those under conventional tillage by 200 INR hour−1

and those under the simple ZT technology by 68 INR

hour−1, on the average. Similar to the gross margin,

returns to capital are significantly higher under ZT

wheat as compared to CT wheat (exceeding the

latter by approximately 12%), while there is no signifi-

cant difference between ZT technologies (Column 11).

Table 6 compares the primary rice residue manage-

ment practices across the three wheat production

regimes; the percentages shown are directly compar-

able as all survey respondents used a combine har-

vester for their rice, leaving relatively large amounts

of residue behind. The table shows that approxi-

mately two-thirds of the farmers who used CT wheat

burned either all residues left after the rice harvest

or they burned loose residues only. For the remaining

one-third of CT users, incorporation of residues into

the soil was the primary practice cited. Moving on

Table 6. Primary practice of managing rice residues in Punjab, India,
by wheat establishment method (values are percentages).

Incorporated
residues into

the soil

Burned
all

residues

Burned
loose

residues

Left
residues
in the
field

Conventional-
tillage wheat
(N = 561)

33.5 45.6 20.9 0.0

Zero-till wheat
(simple ZT
drill; N = 226)

0.4 7.5 89.4 2.7

Zero-till wheat
(Happy
Seeder; N =
234)

5.6 0.9 3.0 90.6

Overall (N =
1021)

19.8 26.9 31.9 21.4

Note: Chi-square test significant at the 0.1% level of alpha error
probability.

Table 7. Costs of rice residue management and wheat sowing in Punjab, India, by establishment method and machinery ownership.

All cases
(NLSW = 545, NZTW = 226, NHSW = 234)

Machine rental and custom hiring
services only

(NLSW = 113, NZTW = 128, NHSW = 172)
Custom hiring services only

(NLSW = 51, NZTW = 37, NHSW = 87)

No. of
implements

used

Total time
required
(Min./ha)

Total
cost1

(INR3/
ha)

No. of
implements

used

Total time
required
(Min./ha)

Total
cost2

(INR3/
ha)

No. of
implements

used

Total time
required
(Min./ha)

Total
cost
(INR3/
ha)

Line-sown
wheat with
tillage
(LSW)

3.3a 430.0a 3917a 2.9a 395.1a 5908a 2.6a 377.1a 6702a

Zero-till
wheat,
simple ZT
drill (ZTW)

1.1b 182.4b 1868b 1.1b 173.7b 2286b 1.1b 178.7b 3072b

Zero-till
wheat,
Happy
Seeder
(HSW)

1.0c 168.3c 2123c 1.0c 167.5c 2540c 1.0c 167.8b 3047c

Sig. level of
diff.

*** * *** *** ** *** *** *** ***

Overall 2.3 313.3 3039 1.5 231.5 3383 1.5 231.0 4117

*(**)[***] Means statistically significantly different at the 10%(5%)[1%] level of alpha error probability. Comparisons based on multiple Mann-
Whitney tests accounting for family-wise error; diverging superscript letters indicate statistical significance at least at the indicated level.

1Not accounting for depreciation of owned tractors and implements.
2Not accounting for depreciation of owned tractors.
3Indian Rupees. 1 USD = 64.8 INR (Nov 01, 2017). Only variable costs are considered.
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to the simple ZT drill users, the table demonstrates

that this does not lead to a reduction of rice residue

burning as compared to CT. On the contrary, since,

by definition, residues are not incorporated into the

soil under ZT, and the simple ZT drill is not capable

of directly sowing wheat into the large amounts of

residue left after combine-harvesting of rice, the

burning of loose residues is the dominant practice

cited by 89.4% of simple ZT drill users. It is only the

HS that leads to a dramatic reduction of rice residue

burning, with 90.6% of HS users reporting that they

retained all residues in the field to decompose. The

fact that some HS users reported incorporation or

burning of residues indicates that the HS may not

always be used as intended.

Table 7 explores the costs and time requirements of

the rice residue management and wheat sowing prac-

tices across the three technologies. To ensure compar-

ability, 16 cases of broadcast-sown wheat after tillage

were excluded from the analysis, so that wheat estab-

lishment with tillage refers to line-sown wheat (LSW)

only in the following analysis. Furthermore, costs

incurred account for variable costs only, i.e. machine

depreciation is not taken into account, as elaborated

in Section 4.2.2. Therefore, the magnitude of cost

savings depends on whether or not machines are

owned and can be most clearly quantified for cases

where all machines are accessed via custom-hiring ser-

vices. Hence, Table 7 differentiates between ‘all cases’

(irrespective of machine ownership), cases where

machines are either rented and self-operated or full

services are hired, and cases where custom-hiring ser-

vices are used for all operations.2 In all scenarios,

there are statistically significant differences between

all three wheat establishment methods considered,

both with respect to number of implements used,

time required to complete operation(s), and costs

incurred. Both ZT practices entail obvious time- and

cost savings as compared to LSW. In the most

straight-forward comparison based on custom-hired

operations only, the time saving amounts to around

200 min and the cost saving to approx.

3650 INR ha−1. The use of the HS saves an additional

10 min per hectare as compared to the use of the

simple ZT drill, but costs incurred are very similar due

to slightly higher service fees charged for the HS.

5.3. Determinants of Happy Seeder adoption

We concentrate our following econometric analyses

on only two wheat establishment practices, the use

of the HS versus the use of CT. As highlighted in

Table 6, only the HS has the potential to eradicate

rice residue burning, which is the focus of this study.

Moreover, Tables 5 and 7 showed that the use of

the simple ZT drill does not entail any obvious econ-

omic advantages over the use of the HS, at least if

we consider accessing the two technologies via

machine rental or custom-hiring services rather than

individual ownership.

Table 8 displays the estimates from two regression

models that explore influencing factors of HS adop-

tion, a simple probit model (Model 1) and the ‘heck-

probit’ model which accounts for potential non-

exposure bias as elaborated in Section 4.1.1 (Model

2). Variance inflation factors (VIFs) show that there is

no cause for concern about multicollinearity among

the explanatory variables in the two models, with

the average VIF amounting to 1.29 and the

maximum to 2.13 (variable Sangrur) in Model 1 and

the awareness stage of Model 2, and to 1.34 and

2.30 in the adoption stage of Model 2, respectively.

As a rule of thumb, a value of 10 should not be

exceeded by individual VIFs (Myers, 1990).

Model 1 shows that cultivable area and belonging

to the ‘General’ caste increase the propensity of HS

adoption, whereas the share of income derived from

non-farm sources has a negative effect. On average,

the cultivable area of HS users amounts to 6.3 ha com-

pared to 4.8 ha among CT users (Mann–Whitney test

statistically significant at P < 0.001), illustrating some

degree of scale bias of current HS adoption. Use of

the HS by primary social network members has a

large and statistically highly significant effect on the

respondent’s adoption decision (endogenous

network effect). The estimated marginal effect indi-

cates that the respondent farmer’s propensity to

adopt the HS increases by 13 percentage points if

one additional member of his primary network is

using the technology. The age of the NMs has an

adverse effect on the respondent’s propensity to

adopt the HS (exogenous network effect), which

may indicate that novel technologies are discussed

more intensely among relatively younger farmers.

The effect is very small in magnitude, however. It is

further important to note that the geographical

spread of the HS was very heterogeneous at the

time of the survey: as indicated by the district

dummies, the likelihood of HS adoption increased

by 27.7 percentage points if a farmer resided in

Sangrur district, relative to the base district of

Ludhiana.
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The second stage of Model 2 produces very similar

estimates as the simpler Model 1. However, the first

stage of Model 2 indicates that the factors affecting

farmers’ awareness of the HS differ from those that

affect the adoption decision: landholding size does

not significantly affect awareness, but age, education

and credit access enhance awareness. The share of

income derived from non-farm sources has a highly

significant negative effect on awareness. This is plaus-

ible as households that depend less on agricultural

income may be less active in acquiring information

about (and then testing) novel farming practices.

The use of the internet for agricultural information

acquisition has a surprisingly large and highly signifi-

cant positive effect, increasing the likelihood of being

aware of the HS bymore than 50 percentage points. In

contrast, the use of TV yields a much smaller coeffi-

cient which is significant at P < 0.15 only. Our data

do not support a significant role of farmer groups or

agricultural extension in diffusing information about

the HS. We find that HS adoption among respondents’

NMs also affected awareness, but, as indicated by the

magnitude of coefficients, social networks seem to

play a more important role when it comes to the

adoption decision.

A Wald test of independent equations indicates

that the error terms of the first- and second-stage

equations are uncorrelated, which means that the

use of the simpler Model 1 is justified (see Equation

(1)). This is corroborated by the fact that Model 2

does not lead to an improvement in explanatory

power. As indicated at the bottom of Table 8, Model

1 predicts 61.5% of cases of HS adoption and 93.4%

of cases of non-adoption correctly, which is slightly

superior to Model 2.

5.4. Quantifying the impact of the Happy

Seeder on wheat yields and production costs

Table 9 displays the regression results of the second

stage of the ETE model, identifying determinants of

wheat yields and per-unit production costs under

HS and CT production regimes, based on the rabi

season 2017/18. The first stage (selection equation)

of the ETE model is a simple probit model whose

use is justified in the case of HS adoption as elabo-

rated in the previous section. The estimates of the

first stage are equivalent to Model 1 shown in Table

8 above. Also the second-stage equation of the ETE

regression was checked for potential multicollinearity

among explanatory variables. The only VIFs exceeding

a value of 10 are related to dummy variables control-

ling for the widely used wheat varieties HD 2967 (VIF

= 21.76) and HD 3086 (20.11), followed by PBW 725

(6.26), in the HS regime. However, the fact that all

three variables produce significant coefficients in

Model 1 indicates no problem of collinearity. The

maximum VIF among the remaining variables is 4.75

(variable Sangrur), and the average amounts to 1.73,

indicating no cause for concern (Myers, 1990).

Model 1 in Table 9 shows that the level of capital

input positively affects wheat yields under both the

CT and HS production regimes, whereby the magni-

tude of the estimated effects is very small. Since

both the dependent variable and Capital input are

logged, the estimated coefficients are elasticities, indi-

cating a 0.08% and 0.04% increase in wheat yield for a

1% increase in capital input under the CT and HS

regimes, respectively. No significant effect of labour

input (neither total labour hours nor expenses for

hired labour) could be identified using our dataset.

It is important to note that the variance in both

wheat yields and input levels is surprisingly low in

our data. A stochastic frontier production function

based on our dataset yields an average technical

efficiency of 0.97 in wheat production, which illus-

trates the low level of variability. Indeed, farmers in

Punjab have largely optimized and, therefore, equal-

ized their wheat growing practices (Aryal et al.,

2015). Aside from capital and labour input, Table 9

identifies a number of statistically significant yield

determinants, and it shows that these factors differ

between CT and HS wheat regimes. Within the

observed range of wheat sowing dates (Oct 28 to

Nov 20), the variable Late sown indicates a statistically

significant – yet practically negligible – yield gain of

2% if CT wheat is sown later than November 13; the

estimated coefficient is of similar magnitude for HS

wheat, but not statistically significant. As mentioned

above, the dummy variables on the three most

common wheat varieties produce significant negative

coefficients indicating a yield loss of around 3% under

the HS production regime, while this is not the case

under CT. Belonging to the ‘General’ caste, being

member of a farmer association, and access to agricul-

tural extension have positive implications on CT

wheat yields only. Interestingly, in the CT regime the

model produces a negative coefficient on Internet

use and in the HS regime a weakly significant negative

effect of extension access. This may indicate a ques-

tionable quality of information derived from these

sources. However, in the case of Internet use the
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result hinges on very few observations and in the case

of Extension access the coefficient is barely statistically

significant; hence, we do not want to over-interpret

these findings. In both production regimes we ident-

ify a positive effect of a more risk-taking nature of the

farmer; one could speculate that these farmers are

less hesitant to apply the required kind and amount

of inputs at the right time than their more risk-

averse counterparts. Furthermore, we find that the

number of mechanization services used for field oper-

ations has a small yet statistically significant yield

reducing effect in both regimes, indicating that the

quality of these services may fall short of that

achieved by owner-operators.

The endogeneity test on correlation of treatment

and outcome unobservables rejects the null-hypoth-

esis at P < 0.11. Hence, there may be unobserved

factors affecting both HS adoption and wheat yields

attained; the weakly significant coefficient on the

IMR derived from the selection equation indicates

that these unobserved factors are negatively

correlated with CT wheat yields (see Section 4.1.3).

Our analysis does not identify a generalizable HS-

induced yield benefit as indicated by the statistically

insignificant ATE estimate. However, among the

farmers who adopted the HS, the estimated ATET is

positive and weakly statistically significant. Calculat-

ing the difference between the estimated counterfac-

tual yield among HS users (i.e. the estimated yield

they would have attained without using the HS) and

the sum of the counterfactual yield plus the estimated

ATET (i.e. exp[8.554565 + 0.055312]− exp[8.554565];

rounded values are shown in Table 9), this translates

into a yield gain of 295 kg ha−1. However, when inter-

preting this result one needs to keep in mind that the

95% confidence interval (CI) around this estimate

extends from 1 to 610 kg ha−1.

Using the same set of explanatory variables, Model

2 in Table 9 identifies determinants of the per-unit

cost (PUC) of wheat production, measured as total

variable cost per quintal, including the imputed cost

of family labour input (see Section 4.2.2). Only in the

Table 8. Maximum Likelihood estimates of a probit model explaining Happy Seeder (HS) adoption and a Heckman probit selection model
explaining awareness of the HS (1st stage) and HS adoption conditional on awareness (2nd stage) in wheat production in Punjab;
coefficients are marginal effects.

Model 1: Probit model Model 2: Probit selection model

HS adoption HS awareness
HS adoption cond. on

awareness

Variable Coefficient1 z-value2 Coefficient1 z-value2 Coefficient1 z-value2

Cultivable area 0.0131 4.02**** 0.0024 0.68 0.0129 3.91****
Dependency ratio 0.0562 0.79 0.0038 0.09 0.0617 0.86
Age −0.0009 −0.64 0.0019 2.43** −0.0008 −0.60
High educationd 0.0146 0.56 0.0654 2.57** 0.0124 0.49
General casted 0.0900 2.05** 0.0034 0.08 0.0905 2.08**
Risk preference −0.0035 −0.34 −0.0020 −0.28 −0.0025 −0.25
Credit access −0.0247 −1.28 0.0320 2.17** −0.0255 −1.34
Non-farm share −0.0014 −1.84* −0.0012 −3.41*** −0.0014 −1.80*
Farmer associationd −0.0074 −0.29 0.0268 0.92 −0.0066 −0.26
Extension access 0.0020 0.10 0.0133 0.81 0.0021 0.10
TV use −0.0399 −1.38 0.0419 1.49 -
Internet use 0.0458 0.74 0.5442 5.09**** -
NM HS use 0.1302 7.64**** 0.0477 2.56** 0.1320 7.98****
NM age −0.0034 −1.93* 0.0018 1.62 −0.0034 −1.96*
Fatehgarhd 0.1054 1.81* 0.0780 1.95* 0.0964 1.73*
Patialad 0.0718 0.99 0.1042 2.03** 0.0682 0.97
Sangrurd 0.2765 5.25**** 0.1344 2.60*** 0.2684 5.30****
N = 795 795 746
Wald chi-square = 614.37**** 539.55****
Wald test of independent equations: chi-square (1) = - 0.29 (n.s.)
Explanatory power:
Cases of HS adopters correctly predicted (%) = 61.5 59.4
Cases of HS non-adopters correctly predicted (%) = 93.4 93.2
Overall cases correctly predicted (%) = 84.0 83.3

*(**)[***]{****} Significant at the 10%(5%)[1%]{0.1%} level of alpha error probability.
1Coefficients are marginal effects evaluated at the means of all explanatory variables; for dummy variables, marginal effects are for a discrete
change from 0 to 1.

2Based on robust standard errors adjusted for 52 village-level clusters.
dDummy variable.
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CT wheat regime is Capital input identified as a major

driver of PUC. Regarding labour input, in both pro-

duction regimes the total number of labour hours

increase PUC at similar estimated elasticities of

around 0.74. In contrast, the expenses for hired

labour produce small but highly significant negative

elasticities, indicating that the marginal benefit of

hired labour use is clearly greater than its marginal

cost. In the HS regime, Model 2 shows variety-

related effects consistent with Model 1, i.e. the most

widely used wheat varieties, HD 2967 and HD 3086

(coefficient significant at P < 0.11 only) lead to an

increase in PUC, which is clearly not the case under

CT. The estimated coefficients are quite large,

suggesting that they may reflect part of the associ-

ated variation in Capital input as well, rendering the

latter variable statistically insignificant. A number of

management related factors are found to affect PUC,

especially in the CT regime: the farmer’s age has a cost

reducing effect which is likely related to farming

experience. High education is estimated to reduce

PUC by 21.7% (calculated as 100*[exp(−0.2445)− 1]),

which may be related to greater allocative efficiency

compared to farmers of lower educational status. Fur-

thermore, being member of a farmer association,

having better access to agricultural extension, and

using television for agricultural information acqui-

sition have cost-reducing effects in CT wheat, while

the data do not support the same in the HS regime.

This suggests that these information sources are

more geared towards traditional agricultural prac-

tices. By contrast, the use of the internet to access

Table 9. OLS estimates of an Endogenous Treatment Effects (ETE) regression explaining wheat yield (Model 1) and per-unit production cost
(Model 2) under conventional-tillage (CT) and Happy Seeder (HS) production regimes (= 2nd stage of ETE model; 1st stage estimates of
selection equation are equivalent to Model 1, Table 8).

Model 1: Yield impact Model 2: Per-unit cost impact

CT wheat (N = 561) HS wheat (N = 234) CT wheat (N = 561) HS wheat (N = 234)

Variable Coefficient z-value1 Coefficient z-value1 Coefficient z-value1 Coefficient z-value1

Capital input 0.0798 2.12** 0.0423 2.14** 1.3130 5.84**** 0.2407 0.49
Labour hours 0.0125 1.13 −0.0048 −0.29 0.7313 5.29**** 0.7450 3.66****
Labour expenses 0.0020 0.80 0.0020 1.26 −0.0984 −3.64**** −0.0817 −4.80****
Late sownd 0.0196 2.51** 0.0227 0.80 0.2049 2.75*** 0.0347 0.14
HD2967d −0.0094 −0.97 −0.0291 −3.13*** −0.0133 −0.09 0.3355 2.06**
HD3086d 0.0053 0.59 −0.0342 −2.61*** −0.0677 −0.45 0.2391 1.64
PBW725d −0.0105 −0.90 −0.0322 −2.06** −0.0215 −0.13 0.1870 1.11
Sandy soild 0.0032 0.24 −0.0045 −0.29 0.0747 1.37 0.0193 0.10
Clay soild 0.0062 0.32 −0.0096 −0.38 −0.0890 −0.39 −0.0281 −0.07
Dependency ratio 0.0134 0.63 −0.0261 −1.48 0.2080 1.34 −0.0083 −0.03
Age −0.0002 −0.38 −0.0001 −0.53 −0.0063 −2.13** −0.0047 −1.19
High educationd −0.0046 −0.54 −0.0057 −0.71 −0.2445 −3.60**** −0.1125 −0.94
General casted 0.0206 2.58** 0.0134 0.91 0.1625 2.13** −0.0319 −0.21
Risk preference 0.0052 2.12** 0.0044 2.03** −0.1459 −7.19**** −0.0694 −1.91*
Non-farm share 0.0001 0.96 0.0002 0.83 0.0047 3.05*** 0.0101 3.20***
Farmer associationd 0.0131 1.85* −0.0087 −1.09 −0.1982 −3.27*** −0.0407 −0.58
Extension access 0.0112 2.03** −0.0046 −1.66* −0.0737 −1.65* −0.0504 −1.25
TV use 0.0023 0.35 −0.0009 −0.11 −0.2066 −3.64**** −0.0671 −0.56
Internet use −0.0304 −3.06*** −0.0083 −0.32 −0.2807 −2.26** −0.5857 −2.16**
No. implements owned −0.0009 −0.37 −0.0106 −0.96 −0.1498 −7.78**** −0.3641 −4.27****
No. services hired −0.0105 −3.12*** −0.0149 −1.76* 0.0427 1.24 0.1526 2.21**
Fatehgarhd 0.0122 1.34 0.0063 0.39 0.1259 1.17 0.0819 0.39
Patialad 0.0205 1.92* −0.0220 −1.08 0.1602 1.80* −0.0296 −0.14
Sangrurd −0.0144 −1.04 0.0251 1.79* 0.4659 4.12**** 0.3691 2.15**
Constant 7.6575 19.21**** 8.2172 42.37**** −8.5379 −3.63**** −0.0137 −0.00
IMR2 −0.0354 −1.92* 0.0005 0.04 1.1291 4.85**** 0.7081 3.31***
Endogeneity3 test chi-square (2) = 4.46 (n.s.) 42.21****
Outcomepot. ATE 8.5840 ATE = 0.0021 0.07 5.3472 ATE = −1.4533 −7.12****
Outcomepot. ATET 8.5546 ATET = 0.0553 1.97* 6.0706 ATET = −1.3112 −3.90****

*(**)[***]{****} Significant at the 10%(5%)[1%]{0.1%} level of alpha error probability.
Notes: ATE = Average Treatment Effect HS vs. CT; ATET = Average Treatment Effect HS vs. CT on the Treated, i.e. among HS adopters (expla-
nations in the text).

1Based on robust standard errors adjusted for 52 village-level clusters.
2Inverse Mills Ratio derived from the selection equation; its inclusion in the second stage equations corrects for potential selection bias.
3H0: Treatment and outcome unobservables are uncorrelated.
dDummy variable.
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agriculture related information is estimated to have a

cost-reducing effect in both production regimes. As

mentioned above, since Internet use has few positive

observations only, this result should be interpreted

cautiously.

A few other factors affect PUC in both production

regimes: consistent with the yield-enhancing effect of

a risk-taking nature of the farmer identified in Model

1, Model 2 indicates a cost-reducing effect of the

same trait, which is particularly pronounced in the CT

regime. The share of non-farm income increases PUC

in both regimes, which may be caused by less experi-

ence and/or less care being exerted on agricultural

activities. Furthermore, we find that the number of

implements owned for rice residue management and

wheat sowing has a highly significant cost-reducing

effect in both regimes, while the number of services

hired to accomplish the same operations increases

PUC significantly in the HS regime. This is expected

as the analysis does not account for fixed costs

related to machine ownership, as elaborated earlier.

While in the CT production regime the number of

implements owned varies between zero and five and

the number of services hired ranges from zero to

four, strictly one implement is used in the case of the

HS regime; therefore, in the latter, No. implements

owned and No. services hired are dummy variables indi-

cating whether the farmer used his own HS or hired a

service provider. Relative to the base category of

machine rental for self-operation, the magnitude of

the coefficients indicate a reduction of PUC by 30.5%

if a farmer uses his own HS and an increase by 16.5%

if a full service is used.

Unlike with Model 1, the endogeneity test on

Model 2 and highly significant IMRs in both regimes

shows that there are clearly unobserved factors

affecting both HS adoption and PUC of wheat pro-

duction, justifying the use of our ETE approach.

Model 2 produces a highly significant negative ATE

of HS use – i.e. a per-unit production cost saving –

translating to 161 INR quintal−1. The 95% CI extends

from 137 to 177 INR quintal−1. The model further pro-

duces a highly significant negative ATET of 316 INR

quintal−1with the 95% CI ranging from 208 to 373 INR

quintal−1. It is important to stress that these estimates

are very robust. In particular, the removal of the wheat

variety dummies (which are relatively highly corre-

lated with each other) and the variable Internet use

(which is highly skewed) leads to virtually identical

estimates of −161 and −318 INR quintal−1 and very

similar CIs for ATE and ATET, respectively.

6. Discussion

In this study we compare yield and cost impacts from

different rice residue management and wheat sowing

practices. We find strong empirical evidence that the

use of the HS does not only have the potential to

avoid residue burning, but that it also leads to signifi-

cant cost savings in wheat production. In particular,

given an average wheat yield of approximately

5450 kg ha−1 (see Table 5), the estimated HS-

induced cost saving of 161 INR quintal−1 is commen-

surate to an average total saving of 8775 INR ha−1,

which is well in line with the recent meta-analysis pro-

vided by Shyamsundar et al. (2019). Our analysis

further produces a 95% CI of the estimated cost

savings, extending from 7467 to 9647 INR ha−1. It is

important to note that even the lower limit of the

95% CI is significantly larger than the observed differ-

ence in gross margins, which does not account for

selection bias between HS users and non-users and

amounts to approximately 2600 INR ha−1 only (Table

5).

We also find that zero-till practices lead to con-

siderable time-savings of 200 min ha−1 or more as

compared to traditional wheat establishment

methods (Table 7). While this is the net time saving

of actual field operations, the overall time saving

may be much more substantial, especially in cases

where farmers rely on custom-hiring services to

accomplish operations. Depending on service avail-

ability, each field operation may be associated with

a waiting period. Accomplishing rice residue manage-

ment and wheat sowing in one single pass of the

tractor, the time-saving potential of the HS is particu-

larly large. Without implying strict causality, the

observed difference in turnaround time between

rice harvest and wheat sowing of approximately

four days (Table 5) implies that farmers are indeed

able to establish their wheat crop earlier under zero-

tillage, and by using the HS in particular. Timeliness

in planting is critical for three reasons: (1) it captures

residual soil moisture, hence allowing to skip pre-

sowing irrigation; (2) it gives wheat a head start in ger-

mination and growth versus Phalaris minor, a major

weed in the area (Chhokar et al., 2007); and (3) it

helps wheat escape terminal heat, a major abiotic

stress in north-western India (Buttar et al., 2013; Jat

et al., 2009).

Soil water deficits and high temperatures are

chronic limitations to wheat productivity in most

parts of South Asia. ZT, in addition to facilitating
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timely planting, markedly reduces evaporation by

retaining crop residues on the soil surface, and it

also increases the amount of water that infiltrates

the soil and, hence, provides better soil water inter-

actions to the root system (Singh et al., 2011).

However, since wheat varieties are developed for CT

based management, their performance under ZT

varies with their relative adaptation to altered man-

agement and soil environment due to Genotype x

Environment x Management (GEM) interactions.

Therefore, failure to target wheat varieties appropri-

ately for diverse management situations may result

in adverse performance and, hence, has implications

for agronomic management targeted breeding.

While our analysis reveals clear benefits of HS use

for the individual farmer, it has to be recognized

that, due to the relatively high investment cost and

high degree of specialization of the machine, individ-

ual ownership is not a promising route of scaling the

technology. Rather, most farmers will access the HS

via custom-hiring services offered by other farmers

or specialized service providers. Group ownership is

another potential option. To assess the attractiveness

of HS service provision as an income earning opportu-

nity, more research is required to elucidate its econ-

omics, especially in comparison with alternative,

tillage related services.

7. Conclusions and recommendations

Among the three wheat establishment methods ana-

lysed – conventional tillage, simple zero-till drill and

Happy Seeder (HS) – only the HS has the potential

to eradicate the practice of rice residue burning due

to its ability to sow wheat directly into large

amounts of anchored and loose residues. While our

analysis does not indicate a general yield benefit

caused by using the HS as compared to convention-

ally tilled wheat, we do find a weakly significant posi-

tive yield impact among those farmers who adopted

the HS. More importantly, however, at a high level

of statistical confidence we show that the HS leads

to significant savings in wheat production costs,

amounting to 161 INR quintal−1, or approximately

8800 INR ha−1 based on average wheat yields in the

research area in south-eastern Punjab.

Neither our descriptive nor our econometric analy-

sis nor farmers’ subjective perceptions indicate that

the use of the HS entails a yield penalty. On the con-

trary, our detailed descriptive analysis of rice residue

management and wheat sowing operations across

establishment methods demonstrates significant

benefits in terms of time and water savings, in

addition to the monetary savings quantified. Since

the availability of custom-hiring services is the prere-

quisite for most farmers to access the technology,

research is required to elucidate the economics of

HS service provision as compared to alternative,

tillage related services.

The combination of the illustrated private benefits

with the societal benefits of reducing air pollution

through ‘zero burning’ justifies the diffusion of the

HS to be supported through appropriate policies,

such as purchase price subsidies that go beyond the

level of subsidy offered for tillage-related implements,

such as the rotavator. It should also be recognized

that there are economic incentives inherent to the

HS technology that could be harnessed if existing

subsidy policies were revised, notably the provision

of free electricity for irrigation.

Our analysis also shows that the most widely used

sources of information are geared towards conven-

tional agricultural practices. Emphasizing the

diffusion of information about the HS and its private

and societal benefits through these channels would

likely support its widespread adoption. In addition,

we find that farmers who use the internet for agricul-

tural information acquisition are far more likely to be

aware of the HS. Therefore, awareness raising cam-

paigns should use both conventional and novel chan-

nels of information to enhance their effectiveness.

Furthermore, as with any innovation that deviates sig-

nificantly from farmers’ habitual practices, a social

marketing strategy should encompass frontline dem-

onstrations that allow farmers to directly observe the

performance of the technology under real-life

conditions.

The ETE model further indicates that there are gen-

otype – management interactions affecting wheat

productivity under ZT versus CT production regimes.

These are likely to apply to any ecology across

South Asia that is characterized by deficient soil

water and high temperatures. Such interactions

should be taken into account by wheat breeders

and agricultural extension to ensure the best possible

outcomes as the use of ZT – and the HS in particular –

becomes more widespread.

Since residue burning imposes tremendous health-

and environmental costs, its reduction and, ideally,

elimination should be sped up as far as possible; to

this end, investments in social marketing and policies

supporting the use of the HS will have to be
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supplemented by a stricter enforcement of the exist-

ing ban on residue burning.

Notes

1. Grass-roots level cooperative credit institutions, many of

which supply local farmers with agricultural inputs and

machinery services.

2. Note that the costs are generally the highest in the latter

category since (1) the first category (‘All cases’) includes

farmers who used their own machinery for all or part

of the required operations (and depreciation of owned

machinery does not enter the calculation as it is a fixed

cost); and (2) the rental fee for machinery to be self-oper-

ated by the farmer (contained in the first and second cat-

egories) is lower than the fee for a full service.

Acknowledgments

We gratefully acknowledge the willingness of the interviewed

farmers to participate in the survey. We thank the CGIAR

Research Program on Wheat Agri-Food Systems (CRP WHEAT),

The Nature Conservancy (TNC) and the Indian Council of Agri-

cultural Research (ICAR) for funding this research. Any opinions,

findings, conclusions, or recommendations expressed in this

publication are those of the authors and do not necessarily

reflect the view the associated and/or supporting institutions/

funders. The usual disclaimer applies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by Indian Council of Agricultural

Research; Nature Conservancy; CGIAR Research Program on

Wheat Agri-Food Systems (CRP WHEAT).

Notes on contributors

Alwin Keil recently joined UNIQUE forestry and land use GmbH,

a consulting firm based in Freiburg, Germany. As Senior Agricul-

tural Economist he is engaged in analytical and advisory work

around sustainable and climate-smart land use in developing

countries. Prior to this he held a position as Senior Agricultural

Economist with the International Maize and Wheat Improve-

ment Center (CIMMYT), working in the Cereal Systems Initiative

for South Asia (CSISA) and being based in New Delhi, India.

Before joining CIMMYT in 2013, Alwin held a position as an

assistant professor at the Department of Agricultural Economics

and Social Sciences in the Tropics and Subtropics at the Univer-

sity of Hohenheim, Germany. Alwin holds a Ph.D. in Agricultural

Economics and an M.Sc. in Agricultural Sciences from Georg-

August University of Goettingen, Germany. He also holds a

diploma in Tropical Agriculture from University of Kassel,

Germany.

P. P. Krishnapriya is a research scientist at the Sanford School of

Public Policy, Duke University. Prior to this, she was a visiting

assistant professor at the Economics and Planning Unit, Indian

Statistical Institute in Delhi. She graduated with a Ph.D. in Econ-

omics from the Delhi School of Economics in 2017. She is trained

in microeconomics and econometrics with applications in issues

at the intersection of energy, environmental, labour and devel-

opment economics.

Archisman Mitra is currently working as a Water Resource Econ-

omist with the International Water Management Institute

(IWMI). With a Masters in Economics, his current areas of interest

are issues related to sustainable management of natural

resources and evaluation of water policy instruments. He is

based in New Delhi, India. Prior to joining IWMI, he was

working as a Research Associate at the International Maize

and Wheat Improvement Center (CIMMYT), working in the

Cereal Systems Initiative for South Asia (CSISA).

Mangi L. Jat is a Principal Scientist/Systems Agronomist and

Sustainable Intensification Strategy Leader for Asia & North

Africa at the International Maize and Wheat Improvement

Center (CIMMYT). After obtaining a Ph.D. degree in Agronomy

from ICAR-Indian Agricultural Research Institute (IARI), New

Delhi, he served the Indian Council of Agricultural Research

(ICAR) as a Systems Agronomist for 11 years before joining

CIMMYT in 2009. Mangi Lal works on basic and applied

science in agronomy, soils and environment to promote Conser-

vation Agriculture (CA) based sustainable intensification and

climate-smart agriculture in smallholder systems of Asia. He

has served several reputed international and national scientific

bodies and fora, including the International Rice Research Insti-

tute (IRRI), the UN Food and Agriculture Organization (FAO), the

International Society of Precision Agriculture (ISPA), and others

in various capacities.

Harminder S. Sidhu is a Principal Research Engineer at the

Borlaug Institute for South Asia (BISA) which collaborates

closely with the International Maize and Wheat Improvement

Center (CIMMYT) and the Indian Council of Agricultural Research

(ICAR). His research work focuses on the development of

machinery related to conservation agriculture (CA), such as

the Happy Seeder, the Super Straw Management System for

combine harvesters, CA plot planter, laser land leveler and

others. Furthermore, he is engaged in capacity development

on CA for a range of stakeholders in South Asia and beyond. Har-

minder Singh holds a Ph.D. degree in Farm Power & Machinery

from Punjab Agricultural University in Ludhiana, India, and he

held a position as Senior Research Engineer at the same univer-

sity before joining CIMMYT under the Cereal Systems Initiative

for South Asia (CSISA) in 2009.

Vijesh V. Krishna is a lead economist at the International Maize

and Wheat Improvement Center (CIMMYT). His primary research

interests include social inclusion in the technology diffusion

process and the environmental, economic, and social impacts

of agricultural production in developing countries. Before

joining CIMMYT in 2017, he was a Senior Research Fellow at

the University of Goettingen in Germany for six years, where

he studied the socioeconomic determinants and impacts of

land-use transformation systems in Indonesia. He also worked

as Production and Resource Economist (South Asia) for

CIMMYT during 2009–2012, and as a Ciriacy-Wantrup Post-

INTERNATIONAL JOURNAL OF AGRICULTURAL SUSTAINABILITY 21



doctoral Fellow at the University of California at Berkeley during

2008–2009. Vijesh holds a Ph.D. in Agricultural Economics from

the University of Hohenheim in Germany, an M.Phil. from the

University of Cambridge, and an M.Sc. from the University of

Agricultural Sciences, Bangalore.

Priya Shyamsundar is Lead Economist at the Nature Conser-

vancy (TNC). At TNC, she leads a Global Science team that under-

takes research on the economics of conservation, including

valuing the benefits of environmental interventions and design-

ing economic, policy and behavioral nudges that encourage

action. Priya’s research covers a range of local conservation to

global climate change issues, with a particular focus on econ-

omic development. As a member of IUFRO’s Expert Panel on

Forests and Poverty, a major current focus of her work is an

IPCC type global assessment of forests and poverty. Previously,

Priya was Founder Director of SANDEE, a research network

focused on solutions to shared environment-development chal-

lenges across seven countries in South Asia. Priya has a Ph.D. in

resource and environmental economics from Duke University,

USA.

ORCID

Alwin Keil http://orcid.org/0000-0002-8085-7279

References

Agarwal, R., Awasthi, A., Singh, N., Gupta, P. K., & Mittal, S. K.

(2012). Effects of exposure to rice-crop residue burning

smoke on pulmonary functions and oxygen saturation level

of human beings in Patiala (India). The Science of the Total

Environment, 429, 161–166. https://doi.org/10.1016/j.

scitotenv.2012.03.074

Ahmed, T., Ahmad, B., & Ahmad, W. (2015). Why do farmers burn

rice residue? Examining farmers’ choices in Punjab, Pakistan.

Land Use Policy, 47, 448–458. https://doi.org/10.1016/j.

landusepol.2015.05.004

Angrist, J. D., & Pischke, J. S. (2008). Mostly harmless econo-

metrics: An empiricist’s companion. Princeton University Press.

APEDA. (2017). Basmati survey report, Vol. 1. Agricultural and

Processed Food Products Export Development Authority.

Retrieved June 11, 2020, from https://apeda.gov.in/

apedawebsite/six_head_product/BSK-2017/Basmati_Report-

1.pdf

Aryal, J. P., Sapkota, T. B., Jat, M. L., & Bishnoi, D. (2015). On-farm

economic and environmental impact of zero-tillage wheat: A

case of north-west India. Experimental Agriculture, 51(1), 1–16.

https://doi.org/10.1017/S001447971400012X

Aryal, J. P., Sapkota, T. B., Stirling, C. M., Jat, M. L., Jat, H. S., Rai, M.,

Mittal, S., & Sutaliya, J. M. (2016). Conservation agriculture-

based wheat production better copes with extreme climate

events than conventional tillage-based systems: A case of

untimely excess rainfall in Haryana, India. Agriculture,

Ecosystems and Environment, 233, 325–335. https://doi.org/

10.1016/j.agee.2016.09.013

Awasthi, A., Singh, N., Mittal, S., Gupta, P. K., & Agarwal, R. (2010).

Effects of agriculture crop residue burning on children and

young on PFTs in North West India. The Science of the Total

Environment, 408(20), 4440–4445. https://doi.org/10.1016/j.

scitotenv.2010.06.040

Ayuya, O. I., Gido, E. O., Bett, H. K., Lagat, J. K., Kahi, A. K., & Bauer,

S. (2015). Effect of certified organic production systems on

poverty among smallholder farmers: Empirical evidence

from Kenya. World Development, 67, 27–37. https://doi.org/

10.1016/j.worlddev.2014.10.005

Bhan, S., & Behera, U. K. (2014). Conservation agriculture in

India–problems, prospects and policy issues. International

Soil and Water Conservation Research, 2(4), 1–12. https://doi.

org/10.1016/S2095-6339(15)30053-8

Bhuvaaneshwari, S., Hettiarachchi, H., & Meegoda, J. N. (2019).

Crop residue burning in India: Policy challenges and potential

solutions. International Journal of Environmental Research

and Public Health, 16(5), 832. https://doi.org/10.3390/

ijerph16050832

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,

& Deangelo, B. J. (2013). Bounding the role of black carbon in

the climate system: A scientific assessment. Journal of

Geophysical Research: Atmospheres, 118, 5380–5552.

Buttar, G. S., Sidhu, H. S., Singh, V., Jat, M. L., Gupta, R., Singh, Y., &

Singh, B. (2013). Relay planting of wheat in cotton: An inno-

vative technology for enhancing productivity and profitabil-

ity of wheat in cotton–wheat production system of South

Asia. Experimental Agriculture, 49(1), 19–30. https://doi.org/

10.1017/S0014479712001032

Chambers, R., & Conway, G. (1992). Sustainable rural livelihoods:

Practical concepts for the 21st century [IDS Discussion Paper

No. 296]. Institute of Development Studies, University of

Sussex.

Chhokar, R. S., Sharma, R. K., Jat, G. R., Pundir, A. K., & Gathala, M.

K. (2007). Effect of tillage and herbicides on weeds and pro-

ductivity of wheat under rice–wheat growing system. Crop

Protection, 26(11), 1689–1696. https://doi.org/10.1016/j.

cropro.2007.01.010

Cusworth, D. H., Mickley, L. J., Sulprizio, M. P., Liu, T., Marlier, M.

E., DeFries, R. S., Guttikunda, S. K., & Gupta, P. Quantifying the

influence of agricultural fires in northwest India on urban pol-

lution in Delhi, India. Environmental Research Letters, 13,

044018.

Dandona, L., Dandona, R., Kumar, G. A., Shukla, D. K., Paul, V. K.,

Balakrishnan, K. et al. (2017). Nations within a nation:

Variations in epidemiological transition across the states of

India, 1990ï–2016 in the Global Burden of Disease Study.

The Lancet, 390, 2437–2460.

Deb, P., & Trivedi, P. K. (2006). Maximum simulated likeli-

hood estimation of a negative binomial regression

model with multinomial endogenous treatment. Stata

Journal, 6(2), 246–255. https://doi.org/10.1177/

1536867X0600600206

Diagne, A., & Demont, M. (2007). Taking a new look at empirical

models of adoption: Average treatment effect estimation of

adoption rates and their determinants. Agricultural

Economics, 37(2-3), 201–210.

Di Falco, S., Veronesi, M., & Yesuf, M. (2011). Does adaptation to

climate change provide food security? A micro-perspective

from Ethiopia. American Journal of Agricultural Economics,

93(3), 829–846. https://doi.org/10.1093/ajae/aar006

DoA. (2015). All India report on agriculture census 2010–11.

Government of India: Department of Agriculture,

Cooperation & Farmers Welfare. Retrieved March 15, 2019,

22 A. KEIL ET AL.

http://orcid.org/0000-0002-8085-7279
https://doi.org/10.1016/j.scitotenv.2012.03.074
https://doi.org/10.1016/j.scitotenv.2012.03.074
https://doi.org/10.1016/j.landusepol.2015.05.004
https://doi.org/10.1016/j.landusepol.2015.05.004
https://apeda.gov.in/apedawebsite/six_head_product/BSK-2017/Basmati_Report-1.pdf
https://apeda.gov.in/apedawebsite/six_head_product/BSK-2017/Basmati_Report-1.pdf
https://apeda.gov.in/apedawebsite/six_head_product/BSK-2017/Basmati_Report-1.pdf
https://doi.org/10.1017/S001447971400012X
https://doi.org/10.1016/j.agee.2016.09.013
https://doi.org/10.1016/j.agee.2016.09.013
https://doi.org/10.1016/j.scitotenv.2010.06.040
https://doi.org/10.1016/j.scitotenv.2010.06.040
https://doi.org/10.1016/j.worlddev.2014.10.005
https://doi.org/10.1016/j.worlddev.2014.10.005
https://doi.org/10.1016/S2095-6339(15)30053-8
https://doi.org/10.1016/S2095-6339(15)30053-8
https://doi.org/10.3390/ijerph16050832
https://doi.org/10.3390/ijerph16050832
https://doi.org/10.1017/S0014479712001032
https://doi.org/10.1017/S0014479712001032
https://doi.org/10.1016/j.cropro.2007.01.010
https://doi.org/10.1016/j.cropro.2007.01.010
https://doi.org/10.1177/1536867X0600600206
https://doi.org/10.1177/1536867X0600600206
https://doi.org/10.1093/ajae/aar006


from https://agcensus.nic.in/document/ac1011/reports/

air2010-11complete.pdf

DoA. (2019). Government of Punjab, India: Department of agricul-

ture & farmer welfare. Retrieved March 15, 2019, from https://

agripb.gov.in

Gloede, O., Menkhoff, L., & Waibel, H. (2011). Risk attitude and risk

behavior: Comparing Thailand and Vietnam. Proceedings of

the German Development Economics Conference, Berlin.

Doss, C. (2006). Analyzing technology adoption using microstu-

dies: Limitations, challenges, and opportunities for improve-

ment. Agricultural Economics, 34(3), 207–219.

Erenstein, O., & Laxmi, V. (2008). Zero-tillage impacts in India’s

rice-wheat systems: A review. Soil and Tillage Research, 100

(1–2), 1–14. https://doi.org/10.1016/j.still.2008.05.001

Feder, G., Just, R., & Silberman, D. (1985). Adoption of agricul-

tural innovations in developing countries: A survey.

Economic Development and Cultural Change, 33(2), 255–298.

https://doi.org/10.1086/451461

Feder, G., & Savastano, S. (2006). The role of opinion leaders in

the diffusion of new knowledge: The case of integrated

pest management. World Development, 34(7), 1287–1300.

https://doi.org/10.1016/j.worlddev.2005.12.004

Foster, A. D., & Rosenzweig, M. R. (1995). Learning by doing and

learning from others: Human capital and technical change in

agriculture. Journal of Political Economy, 103(61), 1176–1209.

https://doi.org/10.1086/601447

Granovetter, M. S. (2005). The impact of social structure on econ-

omic outcomes. Journal of Economic Perspectives, 19(1), 33–

50. https://doi.org/10.1257/0895330053147958

Greene, W. H. (2008). Econometric analysis (6th ed.). Pearson

Prentice Hall.

Gupta, N. (2019). Paddy residue burning in Punjab: Understanding

farmers’ perspectives and rural air pollution. Issue Brief March

2019. Council on Energy, Environment and Water (CEEW).

Gupta, R. (2012). Causes of emissions from agricultural residue

burning in north-west India: Evaluation of a technology

policy response. Working Paper no. 66-12. South Asian

Network for Development and Environmental Economics

(SANDEE).

Heckman, J. J. (1979). Sample selection bias as a specification

error. Econometrica, 47(1), 153–161. https://doi.org/10.2307/

1912352

HEI. (2018). Burden of disease attributable to major air pollution

sources in India. GBD MAPS Working Group Special Report

21. Health Effects Institute (HEI).

Jat, M. L., Chakraborty, D., Ladha, J. K., Rana, D. S., Gathala, M. K.,

McDonald, A., & Gerard, B. (2020). Conservation agriculture

for sustainable intensification in South Asia. Nature

Sustainability, 3(4), 336–343. https://doi.org/10.1038/s41893-

020-0500-2

Jat, M. L., Singh, R. G., Saharawat, Y. S., Gathala, M. K., Kumar, V.,

Sidhu, H. S., & Gupta, R. (2009, February 4–7). Innovations

through conservation agriculture: Progress and prospects of

participatory approach in the Indo-Gangetic plains. Pub lead

Papers, 4th World Congress on Conservation Agriculture

(pp. 60–64), New Delhi, India.

Kabunga, N. S., Dubois, T., & Qaim, M. (2012). Heterogeneous

information exposure and technology adoption: The case

of tissue culture bananas in Kenya. Agricultural Economics,

43(5), 473–485. https://doi.org/10.1111/j.1574-0862.2012.

00597.x

Kaur, A., & Rani, J. (2016). An approach to detect stubble burned

areas in Punjab by digitally analyzing satellite images. Journal

for Research, 2(6), 64–69.

Keil, A., D’souza, A., & McDonald, A. J. (2017). Zero-tillage is a

proven technology for sustainable wheat intensification in

the Eastern Indo-Gangetic plains: What determines farmer

awareness and adoption? Food Security, 9(4), 723–743.

https://doi.org/10.1007/s12571-017-0707-x

Krishna, V. V., Aravalath, L. M., & Vikraman, S. (2019). Does caste

determine farmer access to quality information? PLOS ONE,

14(1), e0210721. https://doi.org/10.1371/journal.pone.

0210721

Krishna, V., & Veettil, P. C. Productivity and efficiency impacts of

conservation tillage in northwest Indo-Gangetic Plains.

Agricultural Systems, 127, 127–138.

Kumar, P., Kumar, S., & Joshi, L. (2015). Socioeconomic and

environmental implications of agricultural residue burning:

A case study of Punjab, India. Springer briefs in environ-

mental science. Springer. https://doi.org/10.1007/978-81-

322-2014-5

Liu, T., Marlier, M. E., Karambelas, A., Jain, M., Singh, S., Singh, M.

K., Gautam, R., & DeFries, R. S. (2019). Missing emissions from

post-monsoon agricultural fires in northwestern India:

Regional limitations of MODIS burned area and active fire

products. Environmental Research Communications, 1(1),

011007. https://doi.org/10.1088/2515-7620/ab056c

Lohan, S. K., Jat, H. S., Yadav, A. K., Sidhu, H. S., Jat, M. L.,

Choudhary, M., Peter, J. K., & Sharma, P. C. (2018). Burning

issues of paddy residue management in north-west states

of India. Renewable and Sustainable Energy Reviews, 81,

693–706. https://doi.org/10.1016/j.rser.2017.08.057

Manda, J., Alene, A. D., Gardebroek, C., Kassie, M., & Tembo, G.

(2016). Adoption and impacts of sustainable agricultural

practices on maize yields and incomes: Evidence from rural

Zambia. Journal of Agricultural Economics, 67(1), 130–153.

https://doi.org/10.1111/1477-9552.12127

Mann, R. (2017). Cropping pattern in Punjab (1966–67 to 2014–

15). Economic and Political Weekly, 52(3), 30–33.

Manski, C. F. (1993). Identification of endogenous social effects:

The reflection problem. Review of Economic Studies, 60(3),

531–542. https://doi.org/10.2307/2298123

Manski, C. F. (2000). Economic analysis of social interactions.

Journal of Economic Perspectives, 14(3), 115–136. https://doi.

org/10.1257/jep.14.3.115

Matuschke, I., & Qaim, M. (2009). The impact of social networks

on hybrid seed adoption in India. Agricultural Economics, 40

(5), 493–505. https://doi.org/10.1111/j.1574-0862.2009.

00393.x

Mehla, R. S., Verma, J. K., Gupta, R. K., & Hobbs, P. R. (2000).

Stagnation in the productivity of wheat in the Indo-Gangetic

plains: Zero-till-seed-cum-fertilizer drill as an integrated sol-

ution. Rice-Wheat Consortium Paper Series 8. Rice-Wheat

Consortium.

Mishra, A. K., & Shibata, T. (2012). Synergistic analyses of optical

and microphysical properties of agricultural crop residue

burning aerosols over the Indo-Gangetic Basin (IGB).

Atmospheric Environment, 57, 205–218. https://doi.org/10.

1016/j.atmosenv.2012.04.025

MoA. (2018). Central sector scheme on promotion of agricultural

mechanization for in-situ management of crop residue in the

states of Punjab, Haryana, Uttar Pradesh and NCT of Delhi:

INTERNATIONAL JOURNAL OF AGRICULTURAL SUSTAINABILITY 23

https://agcensus.nic.in/document/ac1011/reports/air2010-11complete.pdf
https://agcensus.nic.in/document/ac1011/reports/air2010-11complete.pdf
https://agripb.gov.in
https://agripb.gov.in
https://doi.org/10.1016/j.still.2008.05.001
https://doi.org/10.1086/451461
https://doi.org/10.1016/j.worlddev.2005.12.004
https://doi.org/10.1086/601447
https://doi.org/10.1257/0895330053147958
https://doi.org/10.2307/1912352
https://doi.org/10.2307/1912352
https://doi.org/10.1038/s41893-020-0500-2
https://doi.org/10.1038/s41893-020-0500-2
https://doi.org/10.1111/j.1574-0862.2012.00597.x
https://doi.org/10.1111/j.1574-0862.2012.00597.x
https://doi.org/10.1007/s12571-017-0707-x
https://doi.org/10.1371/journal.pone.0210721
https://doi.org/10.1371/journal.pone.0210721
https://doi.org/10.1007/978-81-322-2014-5
https://doi.org/10.1007/978-81-322-2014-5
https://doi.org/10.1088/2515-7620/ab056c
https://doi.org/10.1016/j.rser.2017.08.057
https://doi.org/10.1111/1477-9552.12127
https://doi.org/10.2307/2298123
https://doi.org/10.1257/jep.14.3.115
https://doi.org/10.1257/jep.14.3.115
https://doi.org/10.1111/j.1574-0862.2009.00393.x
https://doi.org/10.1111/j.1574-0862.2009.00393.x
https://doi.org/10.1016/j.atmosenv.2012.04.025
https://doi.org/10.1016/j.atmosenv.2012.04.025


Operational guidelines. Ministry of Agriculture and Farmers’

Welfare, New Delhi.

Myers, R. (1990). Classical and modern regression with appli-

cations (2nd ed.). Duxbury.

NAAS. (2017). Innovative viable solution to rice residue burning in

rice-wheat cropping system through concurrent use of super

straw management system-fitted combines and turbo Happy

Seeder. Policy Brief No. 2. National Academy of Agricultural

Sciences. Retrieved September 10, 2019, from https://

naasindia.org/documents/CropBurning.pdf

Nguezet, P. M. D., Diagne, A., Okoruwa, V. O., & Ojehomon, V.

(2011). Impact of improved rice technology (NERICA

varieties) on income and poverty among rice farming house-

holds in Nigeria: A local average treatment effect (LATE)

approach. Quarterly Journal of International Agriculture, 50

(3), 267–291.

Prasad, R., Gangaiah, B., & Aipe, K. C. (1999). Effect of crop

residue management in a rice–wheat cropping system on

growth and yield of crops and on soil fertility. Experimental

Agriculture, 35(4), 427–435. https://doi.org/10.1017/

S001447979935403X

Reddy, A., Rani, C., & Reddy, G. P. (2014). Labour scarcity and

farm mechanisation: A cross state comparison. Indian

Journal of Agricultural Economics, 69(3), 347–358. http://dx.

doi.org/10.2139/ssrn.2666935

Rogers, E. M. (2003). The diffusion of innovations (5th ed.). The

Free Press.

Safi, M. (2016). Indian government declares Delhi air pollution an

emergency. The Guardian. Retrieved June 11, 2020, from

https://www.theguardian.com/world/2016/nov/06/delhi-air-

pollution-closes-schools-for-three-days

Sarkar, S., & Singh., R. P. & Chauhan, A. (2018). Increasing health

threat to greater parts of India due to crop residue burning.

The Lancet Planetary Health, 2, e327–e328.

Saunders, C., Davis, L., & Pearce, D. (2012). Rice-wheat cropping

systems in India and Australia, and development of the

Happy Seeder. ACIAR Impact Assessment Series Report No.

77. Australian Centre for International Agricultural Research.

Schmidt, R., Gravuer, K., Bossange, A. V., Mitchell, J., & Scow, K.

(2018). Long-term use of cover crops and no-till shift soil

microbial community life strategies in agricultural soil. PLOS

ONE, 13(2), e0192953. https://doi.org/10.1371/journal.pone.

0192953

Scoones, I. (1998). Sustainable rural livelihoods: A framework for

analysis. IDS Working Paper No. 72. Institute of

Development Studies, University of Sussex.

Shyamsundar, P., Springer, N. P., Tallis, H., Polasky, S., Jat, M. L.,

Sidhu, H. S., Krishnapriya, P. P., Skiba, N., Ginn, W., Ahuja, V.,

Cummins, J., Datta, I., Dholakia, H. H., Dixon, J., Gerard, B.,

Gupta, R., Hellmann, J., Jadhav, A., Jat, H. S.,… Somanathan,

R. (2019). Fields on fire: Alternatives to crop residue

burning in India. Science, 365(6453), 536–538. https://doi.

org/10.1126/science.aaw4085

Sidhu, H. S., Singh, M., Singh, Y., Blackwell, J., Lohan, S. K.,

Humphreys, E., Jat, M. L., Singh, V., & Singh, S. (2015).

Development and evaluation of the Turbo Happy Seeder

for sowing wheat into heavy rice residues in NW India. Field

Crops Research, 184, 201–212. https://doi.org/10.1016/j.fcr.

2015.07.025

Singh, N. (2018). Fewer stubble fires, Punjab’s air quality

moderate this year. Hindustan Times. Retrieved June 11,

2020, from https://www.hindustantimes.com/punjab/fewer-

stubble-fires-punjab-s-air-quality-moderate-this-year/story-

uaD8zsiwKD3OHyVppuLNxH.html

Singh, B., Eberbach, P. L., Humphreys, E., & Kukal, S. S. (2011). The

effect of rice straw mulch on evapotranspiration, transpira-

tion and soil evaporation of irrigated wheat in Punjab,

India. Agricultural Water Management, 98(12), 1847–1855.

https://doi.org/10.1016/j.agwat.2011.07.002

Singh, Y., Singh, M., Sidhu, H. S., Humphreys, E., Thind, H. S., Jat,

M. L., Blackwell, J., & Singh, V. (2015). Nitrogen management

for zero till wheat with surface retention of rice residues in

north-west India. Field Crops Research, 184, 183–191.

https://doi.org/10.1016/j.fcr.2015.03.025

Songsermsawas, T., Baylis, K., Chhatre, A., & Michelson, H. (2016).

Can peers improve agricultural revenue?World Development,

83, 163–178. https://doi.org/10.1016/j.worlddev.2016.01.023

van de Ven, W. P. M. M., & van Praag, B. M. S. (1981). The demand

for deductibles in private health insurance. Journal of

Econometrics, 17(2), 229–252. https://doi.org/10.1016/0304-

4076(81)90028-2

Vijayakumar, K., Safai, P. D., Devara, P. C. S., Rao, S. V. B., &

Jayasankar, C. K. (2016). Effects of agriculture crop residue

burning on aerosol properties and long-range transport

over northern India: A study using satellite data and model

simulations. Atmospheric Research, 178-179, 155–163.

https://doi.org/10.1016/j.atmosres.2016.04.003

Watts, A. (2018). Biomass power plants help in curbing paddy

stubble fire. The Tribune. Retrieved June 11, 2020, from

https://www.tribuneindia.com/news/punjab/biomass-

power-plants-help-in-curbing-paddy-stubble-fires/663403.

html

Winship, C., & Mare, R. D. (1992). Models for sample selection

bias. Annual Review of Sociology, 18(1), 327–350. https://doi.

org/10.1146/annurev.so.18.080192.001551

Wooldridge, J. M. (2006). Introductory econometrics. A modern

approach (3rd ed.). Thomson South-Western.

Yahaya, I., Pokharel, K. P., Alidu, A. F., & Yamoah, F. A. (2018).

Sustainable agricultural intensification practices and rural

food security: The case of Northwestern Ghana. British Food

Journal, 120(2), 468–482. https://doi.org/10.1108/BFJ-01-

2017-0021

24 A. KEIL ET AL.

https://naasindia.org/documents/CropBurning.pdf
https://naasindia.org/documents/CropBurning.pdf
https://doi.org/10.1017/S001447979935403X
https://doi.org/10.1017/S001447979935403X
http://dx.doi.org/10.2139/ssrn.2666935
http://dx.doi.org/10.2139/ssrn.2666935
https://www.theguardian.com/world/2016/nov/06/delhi-air-pollution-closes-schools-for-three-days
https://www.theguardian.com/world/2016/nov/06/delhi-air-pollution-closes-schools-for-three-days
https://doi.org/10.1371/journal.pone.0192953
https://doi.org/10.1371/journal.pone.0192953
https://doi.org/10.1126/science.aaw4085
https://doi.org/10.1126/science.aaw4085
https://doi.org/10.1016/j.fcr.2015.07.025
https://doi.org/10.1016/j.fcr.2015.07.025
https://www.hindustantimes.com/punjab/fewer-stubble-fires-punjab-s-air-quality-moderate-this-year/story-uaD8zsiwKD3OHyVppuLNxH.html
https://www.hindustantimes.com/punjab/fewer-stubble-fires-punjab-s-air-quality-moderate-this-year/story-uaD8zsiwKD3OHyVppuLNxH.html
https://www.hindustantimes.com/punjab/fewer-stubble-fires-punjab-s-air-quality-moderate-this-year/story-uaD8zsiwKD3OHyVppuLNxH.html
https://doi.org/10.1016/j.agwat.2011.07.002
https://doi.org/10.1016/j.fcr.2015.03.025
https://doi.org/10.1016/j.worlddev.2016.01.023
https://doi.org/10.1016/0304-4076(81)90028-2
https://doi.org/10.1016/0304-4076(81)90028-2
https://doi.org/10.1016/j.atmosres.2016.04.003
https://www.tribuneindia.com/news/punjab/biomass-power-plants-help-in-curbing-paddy-stubble-fires/663403.html
https://www.tribuneindia.com/news/punjab/biomass-power-plants-help-in-curbing-paddy-stubble-fires/663403.html
https://www.tribuneindia.com/news/punjab/biomass-power-plants-help-in-curbing-paddy-stubble-fires/663403.html
https://doi.org/10.1146/annurev.so.18.080192.001551
https://doi.org/10.1146/annurev.so.18.080192.001551
https://doi.org/10.1108/BFJ-01-2017-0021
https://doi.org/10.1108/BFJ-01-2017-0021

	Abstract
	1. Introduction
	2. Background on zero-tillage and the Happy Seeder
	3. Research area, sampling procedure, and data collection
	4. Methodological approach
	4.1. Model estimation strategy
	4.1.1. Accounting for non-exposure to the HS technology
	4.1.2. Accounting for social network effects in the adoption process
	4.1.3. Estimating the on farm impacts of Happy Seeder adoption

	4.2. Model specification
	4.2.1. Determinants of Happy Seeder adoption
	4.2.2. Impact of the Happy Seeder on wheat yields and production costs


	5. Results
	5.1. Awareness and farmer perceptions of the Happy Seeder
	5.2. Comparative analysis of conventional-tillage and zero-tillage wheat production systems
	5.3. Determinants of Happy Seeder adoption
	5.4. Quantifying the impact of the Happy Seeder on wheat yields and production costs

	6. Discussion
	7. Conclusions and recommendations
	Notes
	Acknowledgments
	Disclosure statement
	Notes on contributors
	ORCID
	References

